Gence Loïk, Quero Franck, Escalona Miguel, Wheatley Robert, Seifert Birger, Diaz-Droguett Donovan, Retamal María José, Wallentowitz Sascha, Volkmann Ulrich Georg, Bhuyan Heman
Functional Materials & Devices Laboratory, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
Instituto de Física, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile.
Nanomaterials (Basel). 2024 Jul 10;14(14):1178. doi: 10.3390/nano14141178.
In this study, we present a novel method for fabricating semi-transparent electrodes by combining silver nanowires (AgNW) with titanium nitride (TiN) layers, resulting in conductive nanocomposite coatings with exceptional electromechanical properties. These nanocomposites were deposited on cellulose nanopaper (CNP) using a plasma-enhanced pulsed laser deposition (PE-PLD) technique at low temperatures (below 200 °C). Repetitive bending tests demonstrate that incorporating AgNW into TiN coatings significantly enhances the microstructure, increasing the electrode's electromechanical robustness by up to four orders of magnitude compared to commercial PET/ITO substrates. Furthermore, the optical and electrical conductivities can be optimized by adjusting the AgNW network density and TiN synthesis temperature. Our results also indicate that the nanocomposite electrodes exhibit improved stability in air and superior adhesion compared to bare AgNW coatings.
在本研究中,我们提出了一种通过将银纳米线(AgNW)与氮化钛(TiN)层相结合来制造半透明电极的新方法,从而得到具有优异机电性能的导电纳米复合涂层。这些纳米复合材料采用等离子体增强脉冲激光沉积(PE-PLD)技术在低温(低于200°C)下沉积在纤维素纳米纸(CNP)上。反复弯曲测试表明,将AgNW掺入TiN涂层中可显著增强微观结构,与商用PET/ITO基板相比,电极的机电稳健性提高了多达四个数量级。此外,通过调整AgNW网络密度和TiN合成温度,可以优化光学和电导率。我们的结果还表明,与裸AgNW涂层相比,纳米复合电极在空气中表现出更高的稳定性和更好的附着力。