Suppr超能文献

利用 Totem 推断树状单细胞轨迹

Inferring Tree-Shaped Single-Cell Trajectories with Totem.

机构信息

Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.

Institute of Biomedicine, University of Turku, Turku, Finland.

出版信息

Methods Mol Biol. 2024;2812:169-191. doi: 10.1007/978-1-0716-3886-6_9.

Abstract

Single-cell transcriptomics allows unbiased characterization of cell heterogeneity in a sample by profiling gene expression at single-cell level. These profiles capture snapshots of transient or steady states in dynamic processes, such as cell cycle, activation, or differentiation, which can be computationally ordered into a "flip-book" of cell development using trajectory inference methods. However, prediction of more complex topology structures, such as multifurcations or trees, remains challenging. In this chapter, we present two user-friendly protocols for inferring tree-shaped single-cell trajectories and pseudotime from single-cell transcriptomics data with Totem. Totem is a trajectory inference method that offers flexibility in inferring both nonlinear and linear trajectories and usability by avoiding the cumbersome fine-tuning of parameters. The QuickStart protocol provides a simple and practical example, whereas the GuidedStart protocol details the analysis step-by-step. Both protocols are demonstrated using a case study of human bone marrow CD34+ cells, allowing the study of the branching of three lineages: erythroid, lymphoid, and myeloid. All the analyses can be fully reproduced in Linux, macOS, and Windows operating systems (amd64 architecture) with >8 Gb of RAM using the provided docker image distributed with notebooks, scripts, and data in Docker Hub (elolab/repro-totem-ti). These materials are shared online under open-source license at https://elolab.github.io/Totem-protocol .

摘要

单细胞转录组学通过在单细胞水平上分析基因表达,可以无偏地描述样本中细胞的异质性。这些图谱捕获了动态过程中瞬时或稳定状态的快照,例如细胞周期、激活或分化,这些状态可以使用轨迹推断方法计算为细胞发育的“翻书”。然而,预测更复杂的拓扑结构,如分叉或树状结构,仍然具有挑战性。在本章中,我们使用 Totem 为您介绍两种从单细胞转录组学数据中推断树状单细胞轨迹和伪时间的用户友好型方案。Totem 是一种轨迹推断方法,它提供了推断非线性和线性轨迹的灵活性,并通过避免繁琐的参数微调提高了可用性。QuickStart 方案提供了一个简单实用的示例,而 GuidedStart 方案则详细介绍了分析步骤。这两个方案都使用人类骨髓 CD34+细胞的案例研究进行了演示,允许研究三个谱系的分支:红细胞、淋巴细胞和髓样细胞。所有分析都可以在具有 >8GB RAM 的 Linux、macOS 和 Windows 操作系统(amd64 架构)中使用提供的笔记本、脚本和数据的 Docker 映像(elolab/repro-totem-ti)完全重现。这些材料在 https://elolab.github.io/Totem-protocol 上以开源许可证共享在线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验