Holzmeister Felix, Johannesson Magnus, Böhm Robert, Dreber Anna, Huber Jürgen, Kirchler Michael
Department of Economics, University of Innsbruck, A-6020 Innsbruck, Austria.
Department of Economics, Stockholm School of Economics, SE-113 83 Stockholm, Sweden.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2403490121. doi: 10.1073/pnas.2403490121. Epub 2024 Jul 30.
A typical empirical study involves choosing a sample, a research design, and an analysis path. Variation in such choices across studies leads to heterogeneity in results that introduce an additional layer of uncertainty, limiting the generalizability of published scientific findings. We provide a framework for studying heterogeneity in the social sciences and divide heterogeneity into population, design, and analytical heterogeneity. Our framework suggests that after accounting for heterogeneity, the probability that the tested hypothesis is true for the average population, design, and analysis path can be much lower than implied by nominal error rates of statistically significant individual studies. We estimate each type's heterogeneity from 70 multilab replication studies, 11 prospective meta-analyses of studies employing different experimental designs, and 5 multianalyst studies. In our data, population heterogeneity tends to be relatively small, whereas design and analytical heterogeneity are large. Our results should, however, be interpreted cautiously due to the limited number of studies and the large uncertainty in the heterogeneity estimates. We discuss several ways to parse and account for heterogeneity in the context of different methodologies.
一项典型的实证研究涉及选择样本、研究设计和分析路径。这些选择在不同研究中的差异会导致结果的异质性,从而引入额外的不确定性层面,限制了已发表科学发现的可推广性。我们提供了一个用于研究社会科学中异质性的框架,并将异质性分为总体异质性、设计异质性和分析异质性。我们的框架表明,在考虑到异质性之后,对于平均总体、设计和分析路径而言,被检验假设为真的概率可能远低于具有统计学意义的单个研究的名义错误率所暗示的概率。我们从70项多实验室重复研究、11项对采用不同实验设计的研究的前瞻性荟萃分析以及5项多分析师研究中估计了每种类型的异质性。在我们的数据中,总体异质性往往相对较小,而设计异质性和分析异质性则较大。然而,由于研究数量有限以及异质性估计中存在较大不确定性,我们的结果应谨慎解读。我们讨论了在不同方法论背景下剖析和考虑异质性的几种方法。