Suppr超能文献

用于F508del囊性纤维化跨膜传导调节因子突变位点特异性基因组编辑的下一代三链形成肽核酸

Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation.

作者信息

Gupta Anisha, Barone Christina, Quijano Elias, Piotrowski-Daspit Alexandra S, Perera J Dinithi, Riccardi Adele, Jamali Haya, Turchick Audrey, Zao Weixi, Saltzman W Mark, Glazer Peter M, Egan Marie E

机构信息

Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA.

Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA.

出版信息

J Cyst Fibros. 2025 Jan;24(1):142-148. doi: 10.1016/j.jcf.2024.07.009. Epub 2024 Aug 5.

Abstract

BACKGROUND

Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein for which there is no cure. One approach to cure CF is to correct the underlying mutations in the CFTR gene. We have used triplex-forming peptide nucleic acids (PNAs) loaded into biodegradable nanoparticles (NPs) in combination with donor DNAs as reagents for correcting mutations associated with genetic diseases including CF. Previously, we demonstrated that PNAs induce recombination between a donor DNA and the CFTR gene, correcting the F508del CFTR mutation in human cystic fibrosis bronchial epithelial cells (CFBE cells) and in a CF murine model leading to improved CFTR function with low off-target effects, however the level of correction was still below the threshold for therapeutic cure.

METHODS

Here, we report the use of next generation, chemically modified gamma PNAs (γPNAs) containing a diethylene glycol substitution at the gamma position for enhanced DNA binding. These modified γPNAs yield enhanced gene correction of F508del mutation in human bronchial epithelial cells (CFBE cells) and in primary nasal epithelial cells from CF mice (NECF cells).

RESULTS

Treatment of CFBE cells and NECF cells grown at air-liquid interface (ALI) by NPs containing γtcPNAs and donor DNA resulted in increased CFTR function measured by short circuit current and improved gene editing (up to 32 %) on analysis of genomic DNA.

CONCLUSIONS

These findings provide the basis for further development of PNA and NP technology for editing of the CFTR gene.

摘要

背景

囊性纤维化(CF)是一种常染色体隐性遗传病,由编码囊性纤维化跨膜传导调节因子(CFTR)蛋白的基因突变引起,目前尚无治愈方法。治愈CF的一种方法是纠正CFTR基因中的潜在突变。我们已将加载到可生物降解纳米颗粒(NPs)中的三链形成肽核酸(PNA)与供体DNA结合使用,作为纠正包括CF在内的与遗传疾病相关突变的试剂。此前,我们证明PNA可诱导供体DNA与CFTR基因之间发生重组,纠正人囊性纤维化支气管上皮细胞(CFBE细胞)和CF小鼠模型中的F508del CFTR突变,从而改善CFTR功能,且脱靶效应较低,然而校正水平仍低于治疗性治愈的阈值。

方法

在此,我们报告使用下一代化学修饰的γ-肽核酸(γPNA),其在γ位置含有二甘醇取代基以增强与DNA的结合。这些修饰的γPNA在人支气管上皮细胞(CFBE细胞)和CF小鼠的原代鼻上皮细胞(NECF细胞)中对F508del突变产生了增强的基因校正作用。

结果

用含有γtcPNA和供体DNA的NPs处理在气液界面(ALI)生长的CFBE细胞和NECF细胞,通过短路电流测量发现CFTR功能增强,对基因组DNA分析显示基因编辑得到改善(高达32%)。

结论

这些发现为进一步开发用于编辑CFTR基因的PNA和NP技术提供了基础。

相似文献

1
Next generation triplex-forming PNAs for site-specific genome editing of the F508del CFTR mutation.
J Cyst Fibros. 2025 Jan;24(1):142-148. doi: 10.1016/j.jcf.2024.07.009. Epub 2024 Aug 5.
2
3
Topical cystic fibrosis transmembrane conductance regulator gene replacement for cystic fibrosis-related lung disease.
Cochrane Database Syst Rev. 2016 Jun 17;2016(6):CD005599. doi: 10.1002/14651858.CD005599.pub5.
4
Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
Cochrane Database Syst Rev. 2015 Mar 26(3):CD009841. doi: 10.1002/14651858.CD009841.pub2.
5
Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis.
Cochrane Database Syst Rev. 2023 Mar 3;3(3):CD012040. doi: 10.1002/14651858.CD012040.pub3.
6
Functional rescue of F508del-CFTR through revertant mutations introduced by CRISPR base editing.
Mol Ther. 2025 Mar 5;33(3):970-985. doi: 10.1016/j.ymthe.2025.01.011. Epub 2025 Jan 10.
7
Antibiotic treatment for non-tuberculous mycobacteria lung infection in people with cystic fibrosis.
Cochrane Database Syst Rev. 2025 Mar 27;3(3):CD016039. doi: 10.1002/14651858.CD016039.
8
Airway clearance techniques compared to no airway clearance techniques for cystic fibrosis.
Cochrane Database Syst Rev. 2023 Apr 12;4(4):CD001401. doi: 10.1002/14651858.CD001401.pub4.
9
Macrolide antibiotics (including azithromycin) for cystic fibrosis.
Cochrane Database Syst Rev. 2024 Feb 27;2(2):CD002203. doi: 10.1002/14651858.CD002203.pub5.
10
Unlocking the potential of CRISPR-Cas9 for cystic fibrosis: A systematic literature review.
Gene. 2025 Mar 20;942:149257. doi: 10.1016/j.gene.2025.149257. Epub 2025 Jan 18.

本文引用的文献

2
Recent advances in developing therapeutics for cystic fibrosis.
Hum Mol Genet. 2018 Aug 1;27(R2):R173-R186. doi: 10.1093/hmg/ddy188.
3
In utero nanoparticle delivery for site-specific genome editing.
Nat Commun. 2018 Jun 26;9(1):2481. doi: 10.1038/s41467-018-04894-2.
4
CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.
Nat Med. 2018 Jul;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub 2018 Jun 11.
5
p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
Nat Med. 2018 Jul;24(7):939-946. doi: 10.1038/s41591-018-0050-6. Epub 2018 Jun 11.
6
Innovative Therapeutic Strategies for Cystic Fibrosis: Moving Forward to CRISPR Technique.
Front Pharmacol. 2018 Apr 20;9:396. doi: 10.3389/fphar.2018.00396. eCollection 2018.
7
Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing.
Molecules. 2018 Mar 11;23(3):632. doi: 10.3390/molecules23030632.
8
Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities.
Yale J Biol Med. 2017 Dec 19;90(4):583-598. eCollection 2017 Dec.
9
Gene editing & stem cells.
J Cyst Fibros. 2018 Jan;17(1):10-16. doi: 10.1016/j.jcf.2017.11.018. Epub 2017 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验