Chen Hongyu, Lu Dong, Xiao Ziyi, Li Shensuo, Zhang Wen, Luan Xin, Zhang Weidong, Zheng Guangyong
Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA.
Health Inf Sci Syst. 2024 Aug 8;12(1):41. doi: 10.1007/s13755-024-00300-y. eCollection 2024 Dec.
Target-based strategy is a prevalent means of drug research and development (R&D), since targets provide effector molecules of drug action and offer the foundation of pharmacological investigation. Recently, the artificial intelligence (AI) technology has been utilized in various stages of drug R&D, where AI-assisted experimental methods show higher efficiency than sole experimental ones. It is a critical need to give a comprehensive review of AI applications in drug R &D for biopharmaceutical field.
Relevant literatures about AI-assisted drug R&D were collected from the public databases (Including Google Scholar, Web of Science, PubMed, IEEE Xplore Digital Library, Springer, and ScienceDirect) through a keyword searching strategy with the following terms [("Artificial Intelligence" OR "Knowledge Graph" OR "Machine Learning") AND ("Drug Target Identification" OR "New Drug Development")].
In this review, we first introduced common strategies and novel trends of drug R&D, followed by characteristic description of AI algorithms widely used in drug R&D. Subsequently, we depicted detailed applications of AI algorithms in target identification, lead compound identification and optimization, drug repurposing, and drug analytical platform construction. Finally, we discussed the challenges and prospects of AI-assisted methods for drug discovery.
Collectively, this review provides comprehensive overview of AI applications in drug R&D and presents future perspectives for biopharmaceutical field, which may promote the development of drug industry.
基于靶点的策略是药物研发的一种普遍手段,因为靶点提供了药物作用的效应分子,并为药理学研究奠定了基础。近年来,人工智能(AI)技术已被应用于药物研发的各个阶段,其中人工智能辅助实验方法比单纯的实验方法效率更高。对生物制药领域中人工智能在药物研发中的应用进行全面综述至关重要。
通过关键词搜索策略,从公共数据库(包括谷歌学术、科学网、PubMed、IEEE Xplore数字图书馆、施普林格和科学Direct)收集有关人工智能辅助药物研发的相关文献,搜索词为[(“人工智能”或“知识图谱”或“机器学习”)与(“药物靶点识别”或“新药开发”)]。
在本综述中,我们首先介绍了药物研发的常见策略和新趋势,接着描述了广泛应用于药物研发的人工智能算法的特点。随后,我们详细阐述了人工智能算法在靶点识别、先导化合物识别与优化、药物再利用以及药物分析平台构建中的应用。最后,我们讨论了人工智能辅助药物发现方法面临的挑战和前景。
总体而言,本综述全面概述了人工智能在药物研发中的应用,并为生物制药领域提供了未来展望,这可能会推动制药行业的发展。