Suppr超能文献

人工智能技术在新药研发中的综合应用。

Comprehensive applications of the artificial intelligence technology in new drug research and development.

作者信息

Chen Hongyu, Lu Dong, Xiao Ziyi, Li Shensuo, Zhang Wen, Luan Xin, Zhang Weidong, Zheng Guangyong

机构信息

Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA.

出版信息

Health Inf Sci Syst. 2024 Aug 8;12(1):41. doi: 10.1007/s13755-024-00300-y. eCollection 2024 Dec.

Abstract

PURPOSE

Target-based strategy is a prevalent means of drug research and development (R&D), since targets provide effector molecules of drug action and offer the foundation of pharmacological investigation. Recently, the artificial intelligence (AI) technology has been utilized in various stages of drug R&D, where AI-assisted experimental methods show higher efficiency than sole experimental ones. It is a critical need to give a comprehensive review of AI applications in drug R &D for biopharmaceutical field.

METHODS

Relevant literatures about AI-assisted drug R&D were collected from the public databases (Including Google Scholar, Web of Science, PubMed, IEEE Xplore Digital Library, Springer, and ScienceDirect) through a keyword searching strategy with the following terms [("Artificial Intelligence" OR "Knowledge Graph" OR "Machine Learning") AND ("Drug Target Identification" OR "New Drug Development")].

RESULTS

In this review, we first introduced common strategies and novel trends of drug R&D, followed by characteristic description of AI algorithms widely used in drug R&D. Subsequently, we depicted detailed applications of AI algorithms in target identification, lead compound identification and optimization, drug repurposing, and drug analytical platform construction. Finally, we discussed the challenges and prospects of AI-assisted methods for drug discovery.

CONCLUSION

Collectively, this review provides comprehensive overview of AI applications in drug R&D and presents future perspectives for biopharmaceutical field, which may promote the development of drug industry.

摘要

目的

基于靶点的策略是药物研发的一种普遍手段,因为靶点提供了药物作用的效应分子,并为药理学研究奠定了基础。近年来,人工智能(AI)技术已被应用于药物研发的各个阶段,其中人工智能辅助实验方法比单纯的实验方法效率更高。对生物制药领域中人工智能在药物研发中的应用进行全面综述至关重要。

方法

通过关键词搜索策略,从公共数据库(包括谷歌学术、科学网、PubMed、IEEE Xplore数字图书馆、施普林格和科学Direct)收集有关人工智能辅助药物研发的相关文献,搜索词为[(“人工智能”或“知识图谱”或“机器学习”)与(“药物靶点识别”或“新药开发”)]。

结果

在本综述中,我们首先介绍了药物研发的常见策略和新趋势,接着描述了广泛应用于药物研发的人工智能算法的特点。随后,我们详细阐述了人工智能算法在靶点识别、先导化合物识别与优化、药物再利用以及药物分析平台构建中的应用。最后,我们讨论了人工智能辅助药物发现方法面临的挑战和前景。

结论

总体而言,本综述全面概述了人工智能在药物研发中的应用,并为生物制药领域提供了未来展望,这可能会推动制药行业的发展。

相似文献

1
Comprehensive applications of the artificial intelligence technology in new drug research and development.
Health Inf Sci Syst. 2024 Aug 8;12(1):41. doi: 10.1007/s13755-024-00300-y. eCollection 2024 Dec.
4
Uses of Different Machine Learning Algorithms for Diagnosis of Dental Caries.
J Healthc Eng. 2022 Mar 31;2022:5032435. doi: 10.1155/2022/5032435. eCollection 2022.
7
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.
Therap Adv Gastroenterol. 2025 Jun 23;18:17562848251348574. doi: 10.1177/17562848251348574. eCollection 2025.
8
Artificial intelligence for detecting keratoconus.
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
10
A systematic literature review of machine learning based risk prediction models for diabetic retinopathy progression.
Artif Intell Med. 2023 Sep;143:102617. doi: 10.1016/j.artmed.2023.102617. Epub 2023 Jun 26.

引用本文的文献

3
A bibliometric analysis of the advance of artificial intelligence in medicine.
Front Med (Lausanne). 2025 Feb 21;12:1504428. doi: 10.3389/fmed.2025.1504428. eCollection 2025.
4
Special Issue "Drug Discovery and Application of New Technologies".
Int J Mol Sci. 2024 Nov 1;25(21):11756. doi: 10.3390/ijms252111756.

本文引用的文献

1
Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies.
Nat Comput Sci. 2021 Jan;1(1):33-41. doi: 10.1038/s43588-020-00007-6. Epub 2021 Jan 14.
2
An effective framework for predicting drug-drug interactions based on molecular substructures and knowledge graph neural network.
Comput Biol Med. 2024 Feb;169:107900. doi: 10.1016/j.compbiomed.2023.107900. Epub 2023 Dec 29.
3
Explainability and white box in drug discovery.
Chem Biol Drug Des. 2023 Jul;102(1):217-233. doi: 10.1111/cbdd.14262. Epub 2023 Apr 27.
4
In silico toxicity studies of traditional Chinese herbal medicine: A mini review.
Curr Opin Struct Biol. 2023 Jun;80:102588. doi: 10.1016/j.sbi.2023.102588. Epub 2023 Apr 5.
5
Improving drug response prediction based on two-space graph convolution.
Comput Biol Med. 2023 May;158:106859. doi: 10.1016/j.compbiomed.2023.106859. Epub 2023 Mar 31.
6
NetPro: Neighborhood Interaction-Based Drug Repositioning via Label Propagation.
IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):2159-2169. doi: 10.1109/TCBB.2023.3234331. Epub 2023 Jun 5.
7
Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks.
IEEE J Biomed Health Inform. 2023 Apr;27(4):2128-2137. doi: 10.1109/JBHI.2023.3240305.
8
Virtual Screening, Structural Analysis, and Formation Thermodynamics of Carbamazepine Cocrystals.
Pharmaceutics. 2023 Mar 3;15(3):836. doi: 10.3390/pharmaceutics15030836.
9
Catalyzing next-generation Artificial Intelligence through NeuroAI.
Nat Commun. 2023 Mar 22;14(1):1597. doi: 10.1038/s41467-023-37180-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验