Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
Exp Neurol. 2024 Oct;380:114919. doi: 10.1016/j.expneurol.2024.114919. Epub 2024 Aug 12.
Oxidative stress can impair the endothelial barrier and thereby enable autoantibody migration in Neuromyelitis optica spectrum disorder (NMOSD). Tissue-specific vulnerability to autoantibody-mediated damage could be explained by a differential, tissue-dependent endothelial susceptibility to oxidative stress. In this study, we aim to investigate the barrier integrity and complement profiles of brain and retinal endothelial cells under oxygen-induced oxidative stress to address the question of whether the pathomechanism of NMOSD preferentially affects the brain or the retina. Primary human brain microvascular endothelial cells (HBMEC) and primary human retinal endothelial cells (HREC) were cultivated at different cell densities (2.510 to 210 cells/cm) for real-time cell analysis. Both cell types were exposed to 100, 500 and 2500 μM HO. Immunostaining (CD31, VE-cadherin, ZO-1) and Western blot, as well as complement protein secretion using multiplex ELISA were performed. HBMEC and HREC cell growth phases were cell type-specific. While HBMEC cell growth could be categorized into an initial peak, proliferation phase, plateau phase, and barrier breakdown phase, HREC showed no proliferation phase, but entered the plateau phase immediately after an initial peak. The plateau phase was 7 h shorter in HREC. Both cell types displayed a short-term, dose-dependent adaptive response to HO. Remarkably, at 100 μM HO, the transcellular resistance of HBMEC exceeded that of untreated cells. 500 μM HO exerted a more disruptive effect on the HBMEC transcellular resistance than on HREC. Both cell types secreted complement factors H (FH) and I (FI), with FH secretion remaining stable after 2 h, but FI secretion decreasing at higher HO concentrations. The observed differences in resistance to oxidative stress between primary brain and retinal endothelial cells may have implications for further studies of NMOSD and other autoimmune diseases affecting the eye and brain. These findings may open novel perspectives for the understanding and treatment of such diseases.
氧化应激可损害血管内皮屏障,使抗自身抗体在视神经脊髓炎谱系疾病(NMOSD)中迁移。自身抗体介导的组织损伤的组织特异性易感性可以通过组织依赖性内皮对氧化应激的不同敏感性来解释。在这项研究中,我们旨在研究氧诱导氧化应激下脑和视网膜内皮细胞的屏障完整性和补体谱,以解决 NMOSD 的发病机制是否优先影响大脑或视网膜的问题。原代人脑微血管内皮细胞(HBMEC)和原代人视网膜内皮细胞(HREC)以不同的细胞密度(2.5×10 至 2×10 个细胞/cm)培养,用于实时细胞分析。两种细胞类型均暴露于 100、500 和 2500μM HO 下。进行免疫染色(CD31、VE-cadherin、ZO-1)和 Western blot,以及使用多重 ELISA 进行补体蛋白分泌。HBMEC 和 HREC 的细胞生长阶段是细胞类型特异性的。虽然 HBMEC 细胞生长可以分为初始峰、增殖期、平台期和屏障破坏期,但 HREC 没有增殖期,而是在初始峰后立即进入平台期。HREC 的平台期比未经处理的细胞短 7 小时。两种细胞类型都对 HO 表现出短期的、剂量依赖性的适应性反应。值得注意的是,在 100μM HO 下,HBMEC 的跨细胞电阻超过了未经处理的细胞。500μM HO 对 HBMEC 跨细胞电阻的破坏作用大于对 HREC 的破坏作用。两种细胞类型均分泌补体因子 H(FH)和 I(FI),FH 分泌在 2 小时后保持稳定,但 FI 分泌在较高 HO 浓度下下降。在对氧化应激的抗性方面观察到的脑和视网膜内皮细胞之间的差异可能对 NMOSD 及其他影响眼睛和大脑的自身免疫性疾病的进一步研究具有重要意义。这些发现可能为理解和治疗此类疾病开辟新的视角。