Suppr超能文献

基于权重平均技术的深度神经网络在基于结构 MRI 的阿尔茨海默病检测中的性能评估。

3-1-3 Weight averaging technique-based performance evaluation of deep neural networks for Alzheimer's disease detection using structural MRI.

机构信息

ECE Department, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.

出版信息

Biomed Phys Eng Express. 2024 Sep 24;10(6). doi: 10.1088/2057-1976/ad72f7.

Abstract

Alzheimer's disease (AD) is a progressive neurological disorder. It is identified by the gradual shrinkage of the brain and the loss of brain cells. This leads to cognitive decline and impaired social functioning, making it a major contributor to dementia. While there are no treatments to reverse AD's progression, spotting the disease's onset can have a significant impact in the medical field. Deep learning (DL) has revolutionized medical image classification by automating feature engineering, removing the requirement for human experts in feature extraction. DL-based solutions are highly accurate but demand a lot of training data, which poses a common challenge. Transfer learning (TL) has gained attention for its knack for handling limited data and expediting model training. This study uses TL to classify AD using T1-weighted 3D Magnetic Resonance Imaging (MRI) from the Alzheimer's Disease Neuroimaging (ADNI) database. Four modified pre-trained deep neural networks (DNN), VGG16, MobileNet, DenseNet121, and NASNetMobile, are trained and evaluated on the ADNI dataset. The 3-1-3 weight averaging technique and fine-tuning improve the performance of the classification models. The evaluated accuracies for AD classification are VGG16: 98.75%; MobileNet: 97.5%; DenseNet: 97.5%; and NASNetMobile: 96.25%. The receiver operating characteristic (ROC), precision-recall (PR), and Kolmogorov-Smirnov (KS) statistic plots validate the effectiveness of the modified pre-trained model. Modified VGG16 excels with area under the curve (AUC) values of 0.99 for ROC and 0.998 for PR curves. The proposed approach shows effective AD classification by achieving high accuracy using the 3-1-3 weight averaging technique and fine-tuning.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病。它的特征是大脑逐渐缩小和脑细胞丧失,导致认知能力下降和社交功能受损,是痴呆的主要原因之一。虽然目前还没有治疗方法可以逆转 AD 的进展,但早期发现该病对医学领域有重大影响。深度学习(DL)通过自动化特征工程彻底改变了医学图像分类,无需人工专家进行特征提取。基于 DL 的解决方案具有很高的准确性,但需要大量的训练数据,这是一个常见的挑战。迁移学习(TL)因其能够处理有限的数据和加速模型训练而受到关注。本研究使用 TL 对来自阿尔茨海默病神经影像学(ADNI)数据库的 T1 加权 3D 磁共振成像(MRI)进行 AD 分类。对四个经过修改的预训练深度神经网络(DNN),即 VGG16、MobileNet、DenseNet121 和 NASNetMobile,在 ADNI 数据集上进行训练和评估。使用 3-1-3 权重平均技术和微调来提高分类模型的性能。AD 分类的评估准确率为:VGG16:98.75%;MobileNet:97.5%;DenseNet:97.5%;NASNetMobile:96.25%。接收器工作特性(ROC)、精度-召回率(PR)和柯尔莫哥洛夫-斯米尔诺夫(KS)统计图表验证了修改后的预训练模型的有效性。经过修改的 VGG16 表现出色,ROC 曲线下面积(AUC)值为 0.99,PR 曲线的 AUC 值为 0.998。该方法通过使用 3-1-3 权重平均技术和微调实现了高准确性,证明了其在 AD 分类中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验