Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Radiation Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Br J Radiol. 2022 Aug 1;95(1136):20211253. doi: 10.1259/bjr.20211253. Epub 2022 Jun 9.
To employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of Alzheimer's disease (AD) using brain MRI.
Herein, we applied three popular pre-trained CNN models (ResNet101, Xception, and InceptionV3) using a fine-tuned approach of TL on 3D -weighted brain MRI from a subset of ADNI dataset ( = 305 subjects). To evaluate power of TL, the aforementioned networks were also trained from scratch for performance comparison. Initially, Unet network segmentedthe MRI scans into characteristic components of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The proposed networks were trained and tested over the pre-processed and augmented segmented and whole images for both binary (NC/AD + progressive mild cognitive impairment (pMCI)+stable MCI (sMCI)) and 4-class (AD/pMCI/sMCI/NC) classification. Also, two independent test sets from the OASIS ( = 30) and AIBL ( = 60) datasets were used to externally assess the performance of the proposed algorithms.
The proposed TL-based CNN models achieved better performance compared to the training CNN models from scratch. On the ADNI test set, InceptionV3-TL achieved the highest accuracy of 93.75% and AUC of 92.0% for binary classification, as well as the highest accuracy of 93.75% and AUC of 96.0% for multiclass classification of AD on the whole images. On the OASIS test set, InceptionV3-TL outperformed two other models by achieving 93.33% accuracy with 93.0% AUC in binary classification of AD on the whole images. On the AIBL test set, InceptionV3-TL also outperformed two other models in both binary and multiclass classification tasks on the whole MR images and achieved accuracy/AUC of 93.33%/95.0% and 90.0%/93.0%, respectively. The GM segment as input provided the highest performance in both binary and multiclass classification of AD, as compared to the WM and CSF segments.
This study demonstrates the potential of applying deep TL approach for automated detection and classification of AD using brain MRI with high accuracy and robustness across internal and external test data, suggesting that these models can possibly be used as a supportive tool to assist clinicians in creating objective opinion and correct diagnosis.
We used CNN-based TL approaches and the augmentation techniques to overcome the insufficient data problem. Our study provides evidence that deep TL algorithms can be used for both binary and multiclass classification of AD with high accuracy.
利用基于自动卷积神经网络(CNN)的迁移学习(TL)方法对 ADNI 数据集的脑 MRI 进行 AD 的二进制和多类分类。
本研究应用三种流行的预训练 CNN 模型(ResNet101、Xception 和 InceptionV3),通过 ADNI 数据集的子集(=305 例)的 TL 精细调整方法进行三维加权脑 MRI 分析。为了评估 TL 的能力,还对上述网络进行了从头开始训练,以进行性能比较。首先,Unet 网络将 MRI 扫描分割为灰质(GM)、白质(WM)和脑脊液(CSF)的特征成分。所提出的网络对预处理和扩充后的分割和整体图像进行训练和测试,用于二进制(NC/AD+进行性轻度认知障碍(pMCI)+稳定轻度认知障碍(sMCI))和 4 类(AD/pMCI/sMCI/NC)分类。此外,还使用来自 OASIS(=30)和 AIBL(=60)数据集的两个独立测试集来外部评估所提出算法的性能。
与从头开始训练的 CNN 模型相比,基于 TL 的 CNN 模型的性能更好。在 ADNI 测试集上,InceptionV3-TL 在二进制分类中达到了 93.75%的最高准确率和 92.0%的 AUC,在整个图像的多类分类中达到了 93.75%的最高准确率和 96.0%的 AUC。在 OASIS 测试集上,InceptionV3-TL 在二进制分类中通过实现 93.33%的准确率和 93.0%的 AUC,优于其他两种模型。在 AIBL 测试集上,InceptionV3-TL 也在整个 MRI 图像的二进制和多类分类任务中优于其他两种模型,准确率/AUC 分别为 93.33%/95.0%和 90.0%/93.0%。与 WM 和 CSF 部分相比,GM 部分作为输入提供了 AD 二进制和多类分类的最高性能。
本研究表明,基于深度学习的 TL 方法在使用脑 MRI 进行 AD 的自动检测和分类方面具有很大的潜力,具有内部和外部测试数据的高准确性和稳健性,表明这些模型可作为辅助工具,帮助临床医生做出客观的意见和正确的诊断。
我们使用基于 CNN 的 TL 方法和扩充技术来克服数据不足的问题。我们的研究表明,深度 TL 算法可用于 AD 的二进制和多类分类,具有很高的准确性。