Suppr超能文献

基于深度迁移学习的脑 MRI 阿尔茨海默病全自动检测与分类。

Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.

机构信息

Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Radiation Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

出版信息

Br J Radiol. 2022 Aug 1;95(1136):20211253. doi: 10.1259/bjr.20211253. Epub 2022 Jun 9.

Abstract

OBJECTIVES

To employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of Alzheimer's disease (AD) using brain MRI.

METHODS

Herein, we applied three popular pre-trained CNN models (ResNet101, Xception, and InceptionV3) using a fine-tuned approach of TL on 3D -weighted brain MRI from a subset of ADNI dataset ( = 305 subjects). To evaluate power of TL, the aforementioned networks were also trained from scratch for performance comparison. Initially, Unet network segmentedthe MRI scans into characteristic components of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The proposed networks were trained and tested over the pre-processed and augmented segmented and whole images for both binary (NC/AD + progressive mild cognitive impairment (pMCI)+stable MCI (sMCI)) and 4-class (AD/pMCI/sMCI/NC) classification. Also, two independent test sets from the OASIS ( = 30) and AIBL ( = 60) datasets were used to externally assess the performance of the proposed algorithms.

RESULTS

The proposed TL-based CNN models achieved better performance compared to the training CNN models from scratch. On the ADNI test set, InceptionV3-TL achieved the highest accuracy of 93.75% and AUC of 92.0% for binary classification, as well as the highest accuracy of 93.75% and AUC of 96.0% for multiclass classification of AD on the whole images. On the OASIS test set, InceptionV3-TL outperformed two other models by achieving 93.33% accuracy with 93.0% AUC in binary classification of AD on the whole images. On the AIBL test set, InceptionV3-TL also outperformed two other models in both binary and multiclass classification tasks on the whole MR images and achieved accuracy/AUC of 93.33%/95.0% and 90.0%/93.0%, respectively. The GM segment as input provided the highest performance in both binary and multiclass classification of AD, as compared to the WM and CSF segments.

CONCLUSION

This study demonstrates the potential of applying deep TL approach for automated detection and classification of AD using brain MRI with high accuracy and robustness across internal and external test data, suggesting that these models can possibly be used as a supportive tool to assist clinicians in creating objective opinion and correct diagnosis.

ADVANCES IN KNOWLEDGE

We used CNN-based TL approaches and the augmentation techniques to overcome the insufficient data problem. Our study provides evidence that deep TL algorithms can be used for both binary and multiclass classification of AD with high accuracy.

摘要

目的

利用基于自动卷积神经网络(CNN)的迁移学习(TL)方法对 ADNI 数据集的脑 MRI 进行 AD 的二进制和多类分类。

方法

本研究应用三种流行的预训练 CNN 模型(ResNet101、Xception 和 InceptionV3),通过 ADNI 数据集的子集(=305 例)的 TL 精细调整方法进行三维加权脑 MRI 分析。为了评估 TL 的能力,还对上述网络进行了从头开始训练,以进行性能比较。首先,Unet 网络将 MRI 扫描分割为灰质(GM)、白质(WM)和脑脊液(CSF)的特征成分。所提出的网络对预处理和扩充后的分割和整体图像进行训练和测试,用于二进制(NC/AD+进行性轻度认知障碍(pMCI)+稳定轻度认知障碍(sMCI))和 4 类(AD/pMCI/sMCI/NC)分类。此外,还使用来自 OASIS(=30)和 AIBL(=60)数据集的两个独立测试集来外部评估所提出算法的性能。

结果

与从头开始训练的 CNN 模型相比,基于 TL 的 CNN 模型的性能更好。在 ADNI 测试集上,InceptionV3-TL 在二进制分类中达到了 93.75%的最高准确率和 92.0%的 AUC,在整个图像的多类分类中达到了 93.75%的最高准确率和 96.0%的 AUC。在 OASIS 测试集上,InceptionV3-TL 在二进制分类中通过实现 93.33%的准确率和 93.0%的 AUC,优于其他两种模型。在 AIBL 测试集上,InceptionV3-TL 也在整个 MRI 图像的二进制和多类分类任务中优于其他两种模型,准确率/AUC 分别为 93.33%/95.0%和 90.0%/93.0%。与 WM 和 CSF 部分相比,GM 部分作为输入提供了 AD 二进制和多类分类的最高性能。

结论

本研究表明,基于深度学习的 TL 方法在使用脑 MRI 进行 AD 的自动检测和分类方面具有很大的潜力,具有内部和外部测试数据的高准确性和稳健性,表明这些模型可作为辅助工具,帮助临床医生做出客观的意见和正确的诊断。

知识的进步

我们使用基于 CNN 的 TL 方法和扩充技术来克服数据不足的问题。我们的研究表明,深度 TL 算法可用于 AD 的二进制和多类分类,具有很高的准确性。

相似文献

1
Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.
Br J Radiol. 2022 Aug 1;95(1136):20211253. doi: 10.1259/bjr.20211253. Epub 2022 Jun 9.
3
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
Int J Neural Syst. 2020 Jun;30(6):2050032. doi: 10.1142/S012906572050032X.
5
Diagnosing Alzheimer's Disease Based on Multiclass MRI Scans using Transfer Learning Techniques.
Curr Med Imaging. 2021;17(12):1460-1472. doi: 10.2174/1573405617666210127161812.
7
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.
Neuroimage Clin. 2019;23:101929. doi: 10.1016/j.nicl.2019.101929. Epub 2019 Jul 4.
8
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
9
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.

引用本文的文献

1
Novel deep learning for multi-class classification of Alzheimer's in disability using MRI datasets.
Front Bioinform. 2025 Aug 20;5:1567219. doi: 10.3389/fbinf.2025.1567219. eCollection 2025.
2
Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.
J Med Signals Sens. 2024 Dec 3;14:33. doi: 10.4103/jmss.jmss_47_23. eCollection 2024.
3
An intelligent magnetic resonance imagining-based multistage Alzheimer's disease classification using swish-convolutional neural networks.
Med Biol Eng Comput. 2025 Mar;63(3):885-899. doi: 10.1007/s11517-024-03237-2. Epub 2024 Nov 15.
4
Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices.
Front Comput Neurosci. 2024 Sep 20;18:1360095. doi: 10.3389/fncom.2024.1360095. eCollection 2024.
5
Frontiers and hotspots evolution in mild cognitive impairment: a bibliometric analysis of from 2013 to 2023.
Front Neurosci. 2024 Aug 16;18:1352129. doi: 10.3389/fnins.2024.1352129. eCollection 2024.
6
BNLoop-GAN: a multi-loop generative adversarial model on brain network learning to classify Alzheimer's disease.
Front Neurosci. 2023 Jun 23;17:1202382. doi: 10.3389/fnins.2023.1202382. eCollection 2023.
7
Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network.
Pol J Radiol. 2023 Jan 19;88:e31-e40. doi: 10.5114/pjr.2023.124434. eCollection 2023.
8
Efficient Training on Alzheimer's Disease Diagnosis with Learnable Weighted Pooling for 3D PET Brain Image Classification.
Electronics (Basel). 2023 Jan 2;12(2). doi: 10.3390/electronics12020467. Epub 2023 Jan 16.

本文引用的文献

1
Spatiotemporal feature extraction and classification of Alzheimer's disease using deep learning 3D-CNN for fMRI data.
J Med Imaging (Bellingham). 2020 Sep;7(5):056001. doi: 10.1117/1.JMI.7.5.056001. Epub 2020 Oct 27.
2
An Intelligent System for Early Recognition of Alzheimer's Disease Using Neuroimaging.
Sensors (Basel). 2022 Jan 19;22(3):740. doi: 10.3390/s22030740.
3
Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images.
Br J Radiol. 2021 May 1;94(1121):20201263. doi: 10.1259/bjr.20201263. Epub 2021 Apr 16.
4
2021 Alzheimer's disease facts and figures.
Alzheimers Dement. 2021 Mar;17(3):327-406. doi: 10.1002/alz.12328. Epub 2021 Mar 23.
5
A Transfer Learning Approach for Early Diagnosis of Alzheimer's Disease on MRI Images.
Neuroscience. 2021 Apr 15;460:43-52. doi: 10.1016/j.neuroscience.2021.01.002. Epub 2021 Jan 17.
8
Transfer Learning-Based Automatic Detection of Coronavirus Disease 2019 (COVID-19) from Chest X-ray Images.
J Biomed Phys Eng. 2020 Oct 1;10(5):559-568. doi: 10.31661/jbpe.v0i0.2008-1153. eCollection 2020 Oct.
9
Deep residual learning for neuroimaging: An application to predict progression to Alzheimer's disease.
J Neurosci Methods. 2020 Jun 1;339:108701. doi: 10.1016/j.jneumeth.2020.108701. Epub 2020 Apr 8.
10
GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR ALZHEIMER'S DISEASE CLASSIFICATION.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:414-417. doi: 10.1109/ISBI.2019.8759531. Epub 2019 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验