Suppr超能文献

用于阿尔茨海默病分类的图卷积神经网络

GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR ALZHEIMER'S DISEASE CLASSIFICATION.

作者信息

Song Tzu-An, Roy Chowdhury Samadrita, Yang Fan, Jacobs Heidi, El Fakhri Georges, Li Quanzheng, Johnson Keith, Dutta Joyita

机构信息

Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA.

Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:414-417. doi: 10.1109/ISBI.2019.8759531. Epub 2019 Jul 11.

Abstract

Graph convolutional neural networks (GCNNs) aim to extend the data representation and classification capabilities of convolutional neural networks, which are highly effective for signals defined on regular Euclidean domains, e.g. image and audio signals, to irregular, graph-structured data defined on non-Euclidean domains. Graph-theoretic tools that enable us to study the brain as a complex system are of great significance in brain connectivity studies. Particularly, in the context of Alzheimer's disease (AD), a neurodegenerative disorder associated with network dysfunction, graph-based tools are vital for disease classification and staging. Here, we implement and test a multi-class GCNN classifier for network-based classification of subjects on the AD spectrum into four categories: cognitively normal, early mild cognitive impairment, late mild cognitive impairment, and AD. We train and validate the network using structural connectivity graphs obtained from diffusion tensor imaging data. Using receiver operating characteristic curves, we show that the GCNN classifier outperforms a support vector machine classifier by margins that are reliant on disease category. Our findings indicate that the performance gap between the two methods increases with disease progression from CN to AD. We thus demonstrate that GCNN is a competitive tool for staging and classification of subjects on the AD spectrum.

摘要

图卷积神经网络(GCNNs)旨在将卷积神经网络的数据表示和分类能力扩展到非欧几里得域上定义的不规则图结构数据,卷积神经网络对定义在规则欧几里得域上的信号(如图像和音频信号)非常有效。使我们能够将大脑作为一个复杂系统进行研究的图论工具在脑连接性研究中具有重要意义。特别是在阿尔茨海默病(AD)的背景下,AD是一种与网络功能障碍相关的神经退行性疾病,基于图的工具对于疾病分类和分期至关重要。在此,我们实现并测试了一种多类GCNN分类器,用于将AD谱系中的受试者基于网络分类为四类:认知正常、早期轻度认知障碍、晚期轻度认知障碍和AD。我们使用从扩散张量成像数据获得的结构连接图来训练和验证网络。使用受试者工作特征曲线,我们表明GCNN分类器在依赖疾病类别的边际上优于支持向量机分类器。我们的研究结果表明,两种方法之间的性能差距随着疾病从CN发展到AD而增加。因此,我们证明GCNN是一种用于AD谱系受试者分期和分类的有竞争力的工具。

相似文献

1
GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR ALZHEIMER'S DISEASE CLASSIFICATION.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:414-417. doi: 10.1109/ISBI.2019.8759531. Epub 2019 Jul 11.
3
4
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
Neuroinformatics. 2018 Oct;16(3-4):295-308. doi: 10.1007/s12021-018-9370-4.
5
Multi-class diagnosis of Alzheimer's disease using cascaded three dimensional-convolutional neural network.
Phys Eng Sci Med. 2020 Dec;43(4):1219-1228. doi: 10.1007/s13246-020-00924-w. Epub 2020 Sep 14.
7
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.
8
Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease.
Neuroimage. 2015 Sep;118:103-17. doi: 10.1016/j.neuroimage.2015.05.050. Epub 2015 May 27.
9
Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.
Comput Med Imaging Graph. 2018 Dec;70:101-110. doi: 10.1016/j.compmedimag.2018.09.009. Epub 2018 Oct 2.
10
Learning graph in graph convolutional neural networks for robust seizure prediction.
J Neural Eng. 2020 Jun 22;17(3):035004. doi: 10.1088/1741-2552/ab909d.

引用本文的文献

2
MPAR-RCNN: a multi-task network for multiple person detection with attribute recognition.
Front Artif Intell. 2025 Feb 7;8:1454488. doi: 10.3389/frai.2025.1454488. eCollection 2025.
3
Multimodal surface-based transformer model for early diagnosis of Alzheimer's disease.
Sci Rep. 2025 Feb 17;15(1):5787. doi: 10.1038/s41598-025-90115-y.
5
Adaptable graph neural networks design to support generalizability for clinical event prediction.
J Biomed Inform. 2025 Mar;163:104794. doi: 10.1016/j.jbi.2025.104794. Epub 2025 Feb 15.
7
GENERATIVE MODELS FOR LARGE-SCALE SIMULATIONS OF CONNECTOME DEVELOPMENT.
IEEE Int Conf Acoust Speech Signal Proc Workshops. 2023 Jun;2023. doi: 10.1109/icasspw59220.2023.10193544. Epub 2023 Aug 2.
8
Speech emotion recognition via graph-based representations.
Sci Rep. 2024 Feb 23;14(1):4484. doi: 10.1038/s41598-024-52989-2.
10
Developing Explainable Deep Model for Discovering Novel Control Mechanism of Neuro-Dynamics.
IEEE Trans Med Imaging. 2024 Jan;43(1):427-438. doi: 10.1109/TMI.2023.3309821. Epub 2024 Jan 2.

本文引用的文献

2
BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.
Neuroimage. 2017 Feb 1;146:1038-1049. doi: 10.1016/j.neuroimage.2016.09.046. Epub 2016 Sep 28.
3
Brain connectivity and novel network measures for Alzheimer's disease classification.
Neurobiol Aging. 2015 Jan;36 Suppl 1(0 1):S121-31. doi: 10.1016/j.neurobiolaging.2014.04.037. Epub 2014 Aug 30.
4
The human connectome: a complex network.
Ann N Y Acad Sci. 2011 Apr;1224:109-125. doi: 10.1111/j.1749-6632.2010.05888.x. Epub 2011 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验