Suppr超能文献

图神经网络技术与脑成像相结合诊断神经系统疾病:综述与展望

The Combination of a Graph Neural Network Technique and Brain Imaging to Diagnose Neurological Disorders: A Review and Outlook.

作者信息

Zhang Shuoyan, Yang Jiacheng, Zhang Ying, Zhong Jiayi, Hu Wenjing, Li Chenyang, Jiang Jiehui

机构信息

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.

School of Life Sciences, Shanghai University, Shanghai 200444, China.

出版信息

Brain Sci. 2023 Oct 16;13(10):1462. doi: 10.3390/brainsci13101462.

Abstract

Neurological disorders (NDs), such as Alzheimer's disease, have been a threat to human health all over the world. It is of great importance to diagnose ND through combining artificial intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze the brain, imaging from morphology, anatomical structure, function features, and other aspects, thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have investigated the application of GNN in the medical field, but the scope is broad, and its application to NDs is less frequent and not detailed enough. This review focuses on the research progress of GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND, including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we investigated common NDs using the GNN diagnostic model in terms of data modality, number of subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research directions. The results of this review may be a valuable contribution to the ongoing intersection of artificial intelligence technology and brain imaging.

摘要

神经疾病(NDs),如阿尔茨海默病,一直是全球人类健康的一大威胁。通过结合人工智能技术和脑成像来诊断神经疾病至关重要。图神经网络(GNN)可以从形态学、解剖结构、功能特征等方面对大脑成像进行建模和分析,从而成为神经疾病诊断中最佳的深度学习模型之一。一些研究人员已经研究了图神经网络在医学领域的应用,但范围很广,其在神经疾病中的应用较少且不够详细。本综述聚焦于图神经网络在神经疾病诊断方面的研究进展。首先,我们系统地研究了神经疾病的图神经网络框架,包括图构建、图卷积、图池化和图预测。其次,我们从数据模态、受试者数量和诊断准确性等方面,使用图神经网络诊断模型研究了常见的神经疾病。第三,我们讨论了一些研究挑战和未来的研究方向。本综述的结果可能会对人工智能技术与脑成像的持续交叉融合做出有价值的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc8c/10605282/2067aba323b8/brainsci-13-01462-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验