Chen Anqi
Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China.
Food Sci Biotechnol. 2024 Jul 3;33(13):2953-2969. doi: 10.1007/s10068-024-01637-6. eCollection 2024 Oct.
Frozen dough technology is important in modern bakery operations, facilitating the transportation of dough at low temperatures to downstream sales points. However, the freeze-thaw process imposes significant stress on baker's yeast, resulting in diminished viability and fermentation capacity. Understanding the mechanisms underlying freeze-thaw stress is essential for mitigating its adverse effects on yeast performance. This review delves into the intricate mechanisms underlying freeze-thaw stress, focusing specifically on , the primary yeast used in baking, and presents a wide range of biotechnological approaches to enhance freeze-thaw resistance in . Strategies include manipulating intracellular metabolites, altering membrane composition, managing antioxidant defenses, mediating aquaporin expression, and employing adaptive evolutionary and breeding techniques. Addressing challenges and strategies associated with freeze-thaw stress, this review provides valuable insights for future research endeavors, aiming to enhance the freeze-thaw tolerance of baker's yeast and contribute to the advancement of bakery science.
冷冻面团技术在现代烘焙操作中至关重要,它便于将低温面团运输到下游销售点。然而,冻融过程会给面包酵母带来巨大压力,导致其活力和发酵能力下降。了解冻融应激背后的机制对于减轻其对酵母性能的不利影响至关重要。本综述深入探讨了冻融应激背后的复杂机制,特别关注烘焙中使用的主要酵母,并提出了一系列生物技术方法来增强其冻融抗性。策略包括操纵细胞内代谢物、改变膜组成、管理抗氧化防御、调节水通道蛋白表达以及采用适应性进化和育种技术。本综述探讨了与冻融应激相关的挑战和策略,为未来的研究工作提供了有价值的见解,旨在提高面包酵母的冻融耐受性,并推动烘焙科学的发展。