Suppr超能文献

提高面包酵母的冻融耐受性:策略与展望

Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives.

作者信息

Chen Anqi

机构信息

Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China.

出版信息

Food Sci Biotechnol. 2024 Jul 3;33(13):2953-2969. doi: 10.1007/s10068-024-01637-6. eCollection 2024 Oct.

Abstract

Frozen dough technology is important in modern bakery operations, facilitating the transportation of dough at low temperatures to downstream sales points. However, the freeze-thaw process imposes significant stress on baker's yeast, resulting in diminished viability and fermentation capacity. Understanding the mechanisms underlying freeze-thaw stress is essential for mitigating its adverse effects on yeast performance. This review delves into the intricate mechanisms underlying freeze-thaw stress, focusing specifically on , the primary yeast used in baking, and presents a wide range of biotechnological approaches to enhance freeze-thaw resistance in . Strategies include manipulating intracellular metabolites, altering membrane composition, managing antioxidant defenses, mediating aquaporin expression, and employing adaptive evolutionary and breeding techniques. Addressing challenges and strategies associated with freeze-thaw stress, this review provides valuable insights for future research endeavors, aiming to enhance the freeze-thaw tolerance of baker's yeast and contribute to the advancement of bakery science.

摘要

冷冻面团技术在现代烘焙操作中至关重要,它便于将低温面团运输到下游销售点。然而,冻融过程会给面包酵母带来巨大压力,导致其活力和发酵能力下降。了解冻融应激背后的机制对于减轻其对酵母性能的不利影响至关重要。本综述深入探讨了冻融应激背后的复杂机制,特别关注烘焙中使用的主要酵母,并提出了一系列生物技术方法来增强其冻融抗性。策略包括操纵细胞内代谢物、改变膜组成、管理抗氧化防御、调节水通道蛋白表达以及采用适应性进化和育种技术。本综述探讨了与冻融应激相关的挑战和策略,为未来的研究工作提供了有价值的见解,旨在提高面包酵母的冻融耐受性,并推动烘焙科学的发展。

相似文献

1
Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives.
Food Sci Biotechnol. 2024 Jul 3;33(13):2953-2969. doi: 10.1007/s10068-024-01637-6. eCollection 2024 Oct.
2
Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing.
Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00406-18. Print 2018 Jun 15.
7
Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.
Int J Food Microbiol. 2013 Aug 1;165(3):241-5. doi: 10.1016/j.ijfoodmicro.2013.05.015. Epub 2013 May 28.
8
Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae.
J Appl Microbiol. 2022 Oct;133(4):2390-2402. doi: 10.1111/jam.15700. Epub 2022 Jul 20.
10
Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
Int J Food Microbiol. 2016 Dec 5;238:233-240. doi: 10.1016/j.ijfoodmicro.2016.09.015. Epub 2016 Sep 22.

本文引用的文献

1
Metabolomic insights into the effect of chickpea protein hydrolysate on the freeze-thaw tolerance of industrial yeasts.
Food Chem. 2024 May 1;439:138143. doi: 10.1016/j.foodchem.2023.138143. Epub 2023 Dec 6.
2
Specific antioxidant enzymes are involved in the freeze-thawing response of industrial baker's yeasts.
Lett Appl Microbiol. 2023 Oct 4;76(10). doi: 10.1093/lambio/ovad117.
3
Dietary Trehalose as a Bioactive Nutrient.
Nutrients. 2023 Mar 14;15(6):1393. doi: 10.3390/nu15061393.
4
Short-clustered maltodextrin provides cryoprotection by maintaining cell membrane homeostasis of yeast during frozen storage.
Food Chem. 2023 Mar 30;405(Pt A):134729. doi: 10.1016/j.foodchem.2022.134729. Epub 2022 Oct 26.
5
Trehalose and its applications in the food industry.
Compr Rev Food Sci Food Saf. 2022 Nov;21(6):5004-5037. doi: 10.1111/1541-4337.13048. Epub 2022 Oct 6.
6
The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts.
Front Microbiol. 2022 Jul 28;13:953479. doi: 10.3389/fmicb.2022.953479. eCollection 2022.
8
Deletion of NTH1 and HSP12 increases the freeze-thaw resistance of baker's yeast in bread dough.
Microb Cell Fact. 2022 Jul 25;21(1):149. doi: 10.1186/s12934-022-01876-4.
9
Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae.
J Appl Microbiol. 2022 Oct;133(4):2390-2402. doi: 10.1111/jam.15700. Epub 2022 Jul 20.
10
Physiological and Molecular Characterization of an Oxidative Stress-Resistant Strain Obtained by Evolutionary Engineering.
Front Microbiol. 2022 Feb 24;13:822864. doi: 10.3389/fmicb.2022.822864. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验