Suppr超能文献

水通道蛋白的表达与面包酵母的耐冻性相关,过表达可提高工业菌株的耐冻性。

Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains.

作者信息

Tanghe An, Van Dijck Patrick, Dumortier Françoise, Teunissen Aloys, Hohmann Stefan, Thevelein Johan M

机构信息

Laboratorium voor Moleculaire Celbiologie, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium.

出版信息

Appl Environ Microbiol. 2002 Dec;68(12):5981-9. doi: 10.1128/AEM.68.12.5981-5989.2002.

Abstract

Little information is available about the precise mechanisms and determinants of freeze resistance in baker's yeast, Saccharomyces cerevisiae. Genomewide gene expression analysis and Northern analysis of different freeze-resistant and freeze-sensitive strains have now revealed a correlation between freeze resistance and the aquaporin genes AQY1 and AQY2. Deletion of these genes in a laboratory strain rendered yeast cells more sensitive to freezing, while overexpression of the respective genes, as well as heterologous expression of the human aquaporin gene hAQP1, improved freeze tolerance. These findings support a role for plasma membrane water transport activity in determination of freeze tolerance in yeast. This appears to be the first clear physiological function identified for microbial aquaporins. We suggest that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage. Aquaporin overexpression also improved maintenance of the viability of industrial yeast strains, both in cell suspensions and in small doughs stored frozen or submitted to freeze-thaw cycles. Furthermore, an aquaporin overexpression transformant could be selected based on its improved freeze-thaw resistance without the need for a selectable marker gene. Since aquaporin overexpression does not seem to affect the growth and fermentation characteristics of yeast, these results open new perspectives for the successful development of freeze-resistant baker's yeast strains for use in frozen dough applications.

摘要

关于面包酵母酿酒酵母抗冻的确切机制和决定因素,目前所知甚少。对不同抗冻和冻敏菌株进行的全基因组基因表达分析和Northern分析现已揭示,抗冻性与水通道蛋白基因AQY1和AQY2之间存在相关性。在实验室菌株中缺失这些基因会使酵母细胞对冷冻更敏感,而各自基因的过表达以及人类水通道蛋白基因hAQP1的异源表达则提高了抗冻性。这些发现支持质膜水运输活性在酵母抗冻性测定中发挥作用。这似乎是首次为微生物水通道蛋白确定的明确生理功能。我们认为,在冷冻过程中,水通过渗透作用快速外流可减少细胞内冰晶形成及由此导致的细胞损伤。水通道蛋白的过表达还提高了工业酵母菌株在细胞悬液以及冷冻保存或经历冻融循环的小面团中的活力维持能力。此外,基于其提高的冻融抗性,可以选择水通道蛋白过表达转化体,而无需选择标记基因。由于水通道蛋白的过表达似乎不会影响酵母的生长和发酵特性,这些结果为成功开发用于冷冻面团应用的抗冻面包酵母菌株开辟了新的前景。

相似文献

2
Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.
Appl Environ Microbiol. 2004 Jun;70(6):3377-82. doi: 10.1128/AEM.70.6.3377-3382.2004.
3
Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing.
Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00406-18. Print 2018 Jun 15.
4
Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.
Appl Environ Microbiol. 2007 Aug;73(15):4824-31. doi: 10.1128/AEM.02651-06. Epub 2007 Jun 8.
6
Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.
J Ind Microbiol Biotechnol. 2014 Aug;41(8):1275-85. doi: 10.1007/s10295-014-1467-7. Epub 2014 Jun 21.
7
Development of intra-strain self-cloning procedure for breeding baker's yeast strains.
J Biosci Bioeng. 2017 Mar;123(3):319-326. doi: 10.1016/j.jbiosc.2016.10.008. Epub 2016 Nov 6.

引用本文的文献

1
Root remodeling mechanisms and salt tolerance trade-offs: The roles of HKT1, TMAC2, and TIP2;2 in Arabidopsis.
PLoS Genet. 2025 Jun 11;21(6):e1011713. doi: 10.1371/journal.pgen.1011713. eCollection 2025 Jun.
2
Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives.
Food Sci Biotechnol. 2024 Jul 3;33(13):2953-2969. doi: 10.1007/s10068-024-01637-6. eCollection 2024 Oct.
3
Polyextremophile engineering: a review of organisms that push the limits of life.
Front Microbiol. 2024 Jun 5;15:1341701. doi: 10.3389/fmicb.2024.1341701. eCollection 2024.
5
A high-throughput yeast approach to characterize aquaporin permeabilities: Profiling the Arabidopsis PIP aquaporin sub-family.
Front Plant Sci. 2023 Jan 19;14:1078220. doi: 10.3389/fpls.2023.1078220. eCollection 2023.
6
Protein Structure and Modification of Aquaporins.
Adv Exp Med Biol. 2023;1398:15-38. doi: 10.1007/978-981-19-7415-1_2.
7
Improving carotenoid production in recombinant yeast, , using ultrasound-irradiated two-phase extractive fermentation.
Eng Life Sci. 2021 Oct 29;22(1):4-12. doi: 10.1002/elsc.202100051. eCollection 2022 Jan.
9
Development of Freeze-Thaw Stable Starch through Enzymatic Modification.
Foods. 2021 Sep 25;10(10):2269. doi: 10.3390/foods10102269.
10
Cryopreservation and the Freeze-Thaw Stress Response in Yeast.
Genes (Basel). 2020 Jul 22;11(8):835. doi: 10.3390/genes11080835.

本文引用的文献

2
Existence of a tightly regulated water channel in Saccharomyces cerevisiae.
Eur J Biochem. 2001 Jan;268(2):334-43. doi: 10.1046/j.1432-1033.2001.01882.x.
4
Genetically modified crops: methodology, benefits, regulation and public concerns.
Br Med Bull. 2000;56(1):62-73. doi: 10.1258/0007142001902978.
5
Polymorphism of Saccharomyces cerevisiae aquaporins.
Yeast. 2000 Jul;16(10):897-903. doi: 10.1002/1097-0061(200007)16:10<897::AID-YEA583>3.0.CO;2-T.
7
Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae.
Enzyme Microb Technol. 2000 Jun 1;26(9-10):688-698. doi: 10.1016/s0141-0229(00)00160-5.
8
Identification of genes responsible for improved cryoresistance in fermenting yeast cells.
Int J Food Microbiol. 2000 Apr 10;55(1-3):259-62. doi: 10.1016/s0168-1605(00)00200-2.
10
Microbial MIP channels.
Trends Microbiol. 2000 Jan;8(1):33-8. doi: 10.1016/s0966-842x(99)01645-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验