Suppr超能文献

孔工程作为一种提高基于蛋白质的酶纳米反应器性能的通用策略。

Pore Engineering as a General Strategy to Improve Protein-Based Enzyme Nanoreactor Performance.

机构信息

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.

出版信息

ACS Nano. 2024 Sep 17;18(37):25740-25753. doi: 10.1021/acsnano.4c08186. Epub 2024 Sep 3.

Abstract

Enzyme nanoreactors are nanoscale compartments consisting of encapsulated enzymes and a selectively permeable barrier. Sequestration and colocalization of enzymes can increase catalytic activity, stability, and longevity, highly desirable features for many biotechnological and biomedical applications of enzyme catalysts. One promising strategy to construct enzyme nanoreactors is to repurpose protein nanocages found in nature. However, protein-based enzyme nanoreactors often exhibit decreased catalytic activity, partially caused by a mismatch of protein shell selectivity and the substrate requirements of encapsulated enzymes. No broadly applicable and modular protein-based nanoreactor platform is currently available. Here, we introduce a pore-engineered universal enzyme nanoreactor platform based on encapsulins-microbial self-assembling protein nanocompartments with programmable and selective enzyme packaging capabilities. We structurally characterize our protein shell designs via cryo-electron microscopy and highlight their polymorphic nature. Through fluorescence polarization assays, we show their improved molecular flux behavior and highlight their expanded substrate range via a number of proof-of-concept enzyme nanoreactor designs. This work lays the foundation for utilizing our encapsulin-based nanoreactor platform for diverse future biotechnological and biomedical applications.

摘要

酶纳米反应器是由包裹酶和选择性渗透屏障组成的纳米级隔室。酶的隔离和共定位可以提高催化活性、稳定性和寿命,这是许多酶催化剂的生物技术和生物医学应用所需要的理想特性。构建酶纳米反应器的一种有前途的策略是重新利用自然界中发现的蛋白质纳米笼。然而,基于蛋白质的酶纳米反应器的催化活性通常会降低,部分原因是蛋白质外壳的选择性与包裹酶的底物要求不匹配。目前还没有广泛适用和模块化的基于蛋白质的纳米反应器平台。在这里,我们引入了一种基于菌毛蛋白的通用酶纳米反应器平台,该平台基于可封装可编程和选择性酶的微生物自组装蛋白纳米隔室。我们通过冷冻电镜对我们的蛋白质壳设计进行了结构表征,并强调了它们的多态性。通过荧光偏振测定法,我们展示了它们改进的分子通量行为,并通过一些概念验证酶纳米反应器设计展示了它们扩展的底物范围。这项工作为利用我们基于菌毛蛋白的纳米反应器平台进行各种未来的生物技术和生物医学应用奠定了基础。

相似文献

1
Pore Engineering as a General Strategy to Improve Protein-Based Enzyme Nanoreactor Performance.
ACS Nano. 2024 Sep 17;18(37):25740-25753. doi: 10.1021/acsnano.4c08186. Epub 2024 Sep 3.
2
Pore engineering as a general strategy to improve protein-based enzyme nanoreactor performance.
bioRxiv. 2024 May 2:2024.05.02.592161. doi: 10.1101/2024.05.02.592161.
3
Engineered Protein Nanocages for Concurrent RNA and Protein Packaging In Vivo.
ACS Synth Biol. 2022 Oct 21;11(10):3504-3515. doi: 10.1021/acssynbio.2c00391. Epub 2022 Sep 28.
4
Nanoreactor Design Based on Self-Assembling Protein Nanocages.
Int J Mol Sci. 2019 Jan 30;20(3):592. doi: 10.3390/ijms20030592.
5
Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor.
ACS Synth Biol. 2015 Sep 18;4(9):1011-9. doi: 10.1021/acssynbio.5b00037. Epub 2015 Apr 28.
6
Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment.
Sci Adv. 2022 Jan 28;8(4):eabj4461. doi: 10.1126/sciadv.abj4461. Epub 2022 Jan 26.
8
Bioengineering a Light-Responsive Encapsulin Nanoreactor: A Potential Tool for Photodynamic Therapy.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):7977-7986. doi: 10.1021/acsami.0c21141. Epub 2021 Feb 15.
9
Structural basis for peroxidase encapsulation in a protein nanocompartment.
bioRxiv. 2023 Sep 18:2023.09.18.558302. doi: 10.1101/2023.09.18.558302.
10
Enhancing Biocatalysis: Metal-Organic Frameworks as Multifunctional Enzyme Hosts.
Acc Chem Res. 2024 Dec 17;57(24):3500-3511. doi: 10.1021/acs.accounts.4c00622. Epub 2024 Nov 28.

引用本文的文献

1
Structural and Biochemical Characterization of a Widespread Enterobacterial Peroxidase Encapsulin.
Adv Sci (Weinh). 2025 Apr 1:e2415827. doi: 10.1002/advs.202415827.
2
A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor.
RSC Chem Biol. 2024 Nov 4;6(1):21-35. doi: 10.1039/d4cb00127c.
3
The Structural Diversity of Encapsulin Protein Shells.
Chembiochem. 2024 Dec 16;25(24):e202400535. doi: 10.1002/cbic.202400535. Epub 2024 Nov 4.

本文引用的文献

1
Point mutation in a virus-like capsid drives symmetry reduction to form tetrahedral cages.
Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2321260121. doi: 10.1073/pnas.2321260121. Epub 2024 May 9.
3
Virus-like particles nanoreactors: from catalysis towards bio-applications.
J Mater Chem B. 2023 Oct 6;11(38):9084-9098. doi: 10.1039/d3tb01112g.
4
Tuning properties of biocatalysis using protein cage architectures.
J Mater Chem B. 2023 Apr 26;11(16):3567-3578. doi: 10.1039/d3tb00168g.
5
Tunable Colocalization of Enzymes within P22 Capsid-Based Nanoreactors.
ACS Appl Mater Interfaces. 2023 Apr 12;15(14):17705-17715. doi: 10.1021/acsami.3c00971. Epub 2023 Mar 30.
6
A Dual-Metal-Catalyzed Sequential Cascade Reaction in an Engineered Protein Cage.
Angew Chem Int Ed Engl. 2023 Apr 11;62(16):e202218413. doi: 10.1002/anie.202218413. Epub 2023 Mar 8.
7
Exploring the Extreme Acid Tolerance of a Dynamic Protein Nanocage.
Biomacromolecules. 2023 Mar 13;24(3):1388-1399. doi: 10.1021/acs.biomac.2c01424. Epub 2023 Feb 16.
8
Protein Cages: From Fundamentals to Advanced Applications.
Chem Rev. 2022 May 11;122(9):9145-9197. doi: 10.1021/acs.chemrev.1c00877. Epub 2022 Apr 8.
9
DNA-based enzymatic systems and their applications.
iScience. 2022 Mar 5;25(4):104018. doi: 10.1016/j.isci.2022.104018. eCollection 2022 Apr 15.
10
Encapsulins.
Annu Rev Biochem. 2022 Jun 21;91:353-380. doi: 10.1146/annurev-biochem-040320-102858. Epub 2022 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验