Suppr超能文献

探索动态蛋白质纳米笼的极端耐酸性。

Exploring the Extreme Acid Tolerance of a Dynamic Protein Nanocage.

机构信息

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0624, United States.

Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan 48109-1382, United States.

出版信息

Biomacromolecules. 2023 Mar 13;24(3):1388-1399. doi: 10.1021/acs.biomac.2c01424. Epub 2023 Feb 16.

Abstract

Encapsulins are microbial protein nanocages capable of efficient self-assembly and cargo enzyme encapsulation. Due to their favorable properties, including high thermostability, protease resistance, and robust heterologous expression, encapsulins have become popular bioengineering tools for applications in medicine, catalysis, and nanotechnology. Resistance against physicochemical extremes like high temperature and low pH is a highly desirable feature for many biotechnological applications. However, no systematic search for acid-stable encapsulins has been carried out, while the influence of pH on encapsulin shells has so far not been thoroughly explored. Here, we report on a newly identified encapsulin nanocage from the acid-tolerant bacterium . Using transmission electron microscopy, dynamic light scattering, and proteolytic assays, we demonstrate its extreme acid tolerance and resilience against proteases. We structurally characterize the novel nanocage using cryo-electron microscopy, revealing a dynamic five-fold pore that displays distinct "closed" and "open" states at neutral pH but only a singular "closed" state under strongly acidic conditions. Further, the "open" state exhibits the largest pore in an encapsulin shell reported to date. Non-native protein encapsulation capabilities are demonstrated, and the influence of external pH on internalized cargo is explored. Our results expand the biotechnological application range of encapsulin nanocages toward potential uses under strongly acidic conditions and highlight pH-responsive encapsulin pore dynamics.

摘要

包被蛋白是微生物蛋白纳米笼,能够高效地自组装并包裹酶类货物。由于其具有高耐热性、抗蛋白酶性和稳健的异源表达等优良特性,包被蛋白已成为医学、催化和纳米技术等领域应用的热门生物工程工具。在高温和低 pH 等极端物理化学条件下具有抗性,是许多生物技术应用的理想特性。然而,目前还没有针对耐酸包被蛋白进行系统搜索,而 pH 对包被蛋白壳的影响也尚未得到彻底研究。在这里,我们报告了一种新鉴定的耐酸细菌中的包被蛋白纳米笼。我们使用透射电子显微镜、动态光散射和蛋白水解测定法,证明了其极端的耐酸性和对蛋白酶的抵抗力。我们使用冷冻电子显微镜对新型纳米笼进行了结构表征,揭示了其独特的五重孔,在中性 pH 下呈现明显的“关闭”和“打开”状态,但在强酸性条件下仅呈现单一的“关闭”状态。此外,“打开”状态显示了迄今为止报道的包被蛋白壳中最大的孔。我们还展示了非天然蛋白质的包裹能力,并探讨了外部 pH 对内部货物的影响。我们的研究结果扩展了包被蛋白纳米笼的生物技术应用范围,使其有望在强酸性条件下使用,并强调了 pH 响应的包被蛋白孔动力学。

相似文献

1
Exploring the Extreme Acid Tolerance of a Dynamic Protein Nanocage.
Biomacromolecules. 2023 Mar 13;24(3):1388-1399. doi: 10.1021/acs.biomac.2c01424. Epub 2023 Feb 16.
2
Structural Characterization of Native and Modified Encapsulins as Nanoplatforms for in Vitro Catalysis and Cellular Uptake.
ACS Nano. 2017 Dec 26;11(12):12796-12804. doi: 10.1021/acsnano.7b07669. Epub 2017 Dec 1.
3
Structure and heterogeneity of a highly cargo-loaded encapsulin shell.
J Struct Biol. 2023 Dec;215(4):108022. doi: 10.1016/j.jsb.2023.108022. Epub 2023 Aug 30.
4
Characterizing the Dynamic Disassembly/Reassembly Mechanisms of Encapsulin Protein Nanocages.
ACS Omega. 2021 Dec 20;7(1):823-836. doi: 10.1021/acsomega.1c05472. eCollection 2022 Jan 11.
5
Engineered Protein Nanocages for Concurrent RNA and Protein Packaging In Vivo.
ACS Synth Biol. 2022 Oct 21;11(10):3504-3515. doi: 10.1021/acssynbio.2c00391. Epub 2022 Sep 28.
7
Assembly and Mechanical Properties of the Cargo-Free and Cargo-Loaded Bacterial Nanocompartment Encapsulin.
Biomacromolecules. 2016 Aug 8;17(8):2522-9. doi: 10.1021/acs.biomac.6b00469. Epub 2016 Jul 7.
8
Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment.
Sci Adv. 2022 Jan 28;8(4):eabj4461. doi: 10.1126/sciadv.abj4461. Epub 2022 Jan 26.
9
Structure and heterogeneity of a highly cargo-loaded encapsulin shell.
bioRxiv. 2023 Jul 26:2023.07.26.550694. doi: 10.1101/2023.07.26.550694.
10
Nanotechnological Applications Based on Bacterial Encapsulins.
Nanomaterials (Basel). 2021 Jun 1;11(6):1467. doi: 10.3390/nano11061467.

引用本文的文献

1
Engineering encapsulin nanocages for drug delivery.
Mater Adv. 2025 Jul 18. doi: 10.1039/d5ma00386e.
3
Structural and Biochemical Characterization of a Widespread Enterobacterial Peroxidase Encapsulin.
Adv Sci (Weinh). 2025 Apr 1:e2415827. doi: 10.1002/advs.202415827.
4
In situ and in vitro cryo-EM reveal structures of mycobacterial encapsulin assembly intermediates.
Commun Biol. 2025 Feb 15;8(1):245. doi: 10.1038/s42003-025-07660-5.
5
Structural Characterization of Encapsulin in Complex with Dye-Decolorizing Peroxide.
Microorganisms. 2024 Nov 30;12(12):2465. doi: 10.3390/microorganisms12122465.
6
The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell.
Nat Commun. 2024 Nov 9;15(1):9715. doi: 10.1038/s41467-024-54175-4.
7
A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor.
RSC Chem Biol. 2024 Nov 4;6(1):21-35. doi: 10.1039/d4cb00127c.
8
The Structural Diversity of Encapsulin Protein Shells.
Chembiochem. 2024 Dec 16;25(24):e202400535. doi: 10.1002/cbic.202400535. Epub 2024 Nov 4.
9
Pore Engineering as a General Strategy to Improve Protein-Based Enzyme Nanoreactor Performance.
ACS Nano. 2024 Sep 17;18(37):25740-25753. doi: 10.1021/acsnano.4c08186. Epub 2024 Sep 3.

本文引用的文献

1
Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem.
Front Microbiol. 2022 May 6;13:824084. doi: 10.3389/fmicb.2022.824084. eCollection 2022.
2
Encapsulins.
Annu Rev Biochem. 2022 Jun 21;91:353-380. doi: 10.1146/annurev-biochem-040320-102858. Epub 2022 Mar 18.
3
Pore structure controls stability and molecular flux in engineered protein cages.
Sci Adv. 2022 Feb 4;8(5):eabl7346. doi: 10.1126/sciadv.abl7346.
4
Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment.
Sci Adv. 2022 Jan 28;8(4):eabj4461. doi: 10.1126/sciadv.abj4461. Epub 2022 Jan 26.
5
Safety evaluation of the food enzyme rennet paste from the abomasum of suckling goats, lambs and calves.
EFSA J. 2021 Dec 17;19(12):e07006. doi: 10.2903/j.efsa.2021.7006. eCollection 2021 Dec.
6
Protein pI and Intracellular Localization.
Front Mol Biosci. 2021 Nov 29;8:775736. doi: 10.3389/fmolb.2021.775736. eCollection 2021.
7
Introduction of Surface Loops as a Tool for Encapsulin Functionalization.
Biomacromolecules. 2021 Dec 13;22(12):5234-5242. doi: 10.1021/acs.biomac.1c01156. Epub 2021 Nov 8.
8
Triggered Reversible Disassembly of an Engineered Protein Nanocage*.
Angew Chem Int Ed Engl. 2021 Nov 15;60(47):25034-25041. doi: 10.1002/anie.202110318. Epub 2021 Oct 18.
9
Large-scale computational discovery and analysis of virus-derived microbial nanocompartments.
Nat Commun. 2021 Aug 6;12(1):4748. doi: 10.1038/s41467-021-25071-y.
10
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验