Suppr超能文献

基于深度学习的中枢神经系统损伤无偏运动分析方法。

A deep learning-based approach for unbiased kinematic analysis in CNS injury.

机构信息

The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.

The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.

出版信息

Exp Neurol. 2024 Nov;381:114944. doi: 10.1016/j.expneurol.2024.114944. Epub 2024 Sep 5.

Abstract

Traumatic spinal cord injury (SCI) is a devastating condition that impacts over 300,000 individuals in the US alone. Depending on the severity of the injury, SCI can lead to varying degrees of sensorimotor deficits and paralysis. Despite advances in our understanding of the underlying pathological mechanisms of SCI and the identification of promising molecular targets for repair and functional restoration, few therapies have made it into clinical use. To improve the success rate of clinical translation, more robust, sensitive, and reproducible means of functional assessment are required. The gold standards for the evaluation of locomotion in rodents with SCI are the Basso Beattie Bresnahan (BBB) scale and Basso Mouse Scale (BMS). To overcome the shortcomings of current methods, we developed two separate markerless kinematic analysis paradigms in mice, MotorBox and MotoRater, based on deep-learning algorithms generated with the DeepLabCut open-source toolbox. The MotorBox system uses an originally designed, custom-made chamber, and the MotoRater system was implemented on a commercially available MotoRater device. We validated the MotorBox and MotoRater systems by comparing them with the traditional BMS test and extracted metrics of movement and gait that can provide an accurate and sensitive representation of mouse locomotor function post-injury, while eliminating investigator bias and variability. The integration of MotorBox and/or MotoRater assessments with BMS scoring will provide a much wider range of information on specific aspects of locomotion, ensuring the accuracy, rigor, and reproducibility of behavioral outcomes after SCI.

摘要

创伤性脊髓损伤 (SCI) 是一种破坏性疾病,仅在美国就影响超过 30 万人。根据损伤的严重程度,SCI 可导致不同程度的感觉运动功能障碍和瘫痪。尽管我们对 SCI 潜在病理机制的理解以及修复和功能恢复的有前途的分子靶点的鉴定取得了进展,但很少有治疗方法被应用于临床。为了提高临床转化的成功率,需要更强大、更敏感和更可重复的功能评估手段。评估 SCI 啮齿动物运动的金标准是 Basso-Beattie-Bresnahan (BBB) 量表和 Basso 小鼠量表 (BMS)。为了克服当前方法的缺点,我们基于 DeepLabCut 开源工具箱生成的深度学习算法,在小鼠中开发了两种独立的无标记运动学分析范式,即 MotorBox 和 MotoRater。MotorBox 系统使用最初设计的定制室,MotoRater 系统则在市售的 MotoRater 设备上实现。我们通过将 MotorBox 和 MotoRater 系统与传统的 BMS 测试进行比较来验证这两个系统,并提取运动和步态的度量指标,这些指标可以在损伤后提供对小鼠运动功能的准确和敏感的描述,同时消除了评估者的偏见和变异性。将 MotorBox 和/或 MotoRater 评估与 BMS 评分相结合,将提供更广泛的关于运动特定方面的信息,确保 SCI 后行为结果的准确性、严谨性和可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验