Suppr超能文献

铜锌掺杂硼酸盐生物活性玻璃的抗生物膜功效

The anti-biofilm efficacy of copper and zinc doped borate bioactive glasses.

作者信息

Fakher Sarah, Westenberg David

机构信息

Missouri University of Science & Technology, Department of Biological Sciences, Rolla, MO 65409, USA.

出版信息

Future Microbiol. 2024;19(14):1229-1242. doi: 10.1080/17460913.2024.2398410. Epub 2024 Sep 13.

Abstract

Healthcare-acquired infections (HAIs) pose significant challenges in medical settings due to their resistance to conventional treatment methods. The role of bacterial biofilms in exacerbating these infections is well-documented, making HAIs particularly difficult to eradicate. Despite numerous research efforts, an effective solution to combat these infections remains elusive. This study aims to explore the potential of metal-ion (copper and zinc) doped borate bioactive glasses (BBGs) as a novel treatment modality to inhibit bacterial species commonly implicated in HAIs: , , and . The study analyzed the efficacy of both direct and indirect applications of BBGs on severe biofilms pre-formed under static and dynamic growth conditions; a comprehensive predictive modeling was developed, simulating diverse clinically relevant conditions. Results demonstrate more than 4 log reduction in bacterial growth within 2 days for direct application and 3 days for indirect application of copper and zinc-doped BBGs. These findings were consistent across the three bacterial species, in both static and dynamic conditions. Copper and zinc-doped BBGs can be an effective approach in combating HAIs complicated by biofilms.

摘要

医疗保健相关感染(HAIs)因其对传统治疗方法具有抗性,在医疗环境中构成了重大挑战。细菌生物膜在加剧这些感染方面所起的作用已有充分记录,这使得医疗保健相关感染特别难以根除。尽管进行了大量研究工作,但对抗这些感染的有效解决方案仍然难以捉摸。本研究旨在探索金属离子(铜和锌)掺杂的硼酸盐生物活性玻璃(BBGs)作为一种新型治疗方式抑制通常与医疗保健相关感染有关的细菌种类( 、 和 )的潜力。该研究分析了BBGs在静态和动态生长条件下预先形成的严重生物膜上直接和间接应用的效果;开发了一个全面的预测模型,模拟各种临床相关条件。结果表明,对于铜和锌掺杂的BBGs,直接应用在2天内细菌生长减少超过4个对数,间接应用在3天内细菌生长减少超过4个对数。在静态和动态条件下,这三种细菌的这些结果都是一致的。铜和锌掺杂的BBGs可能是对抗由生物膜引起的医疗保健相关感染的有效方法。

相似文献

1
The anti-biofilm efficacy of copper and zinc doped borate bioactive glasses.
Future Microbiol. 2024;19(14):1229-1242. doi: 10.1080/17460913.2024.2398410. Epub 2024 Sep 13.
2
Evaluation of the antibacterial properties of four bioactive biomaterials for chronic wound management.
Future Microbiol. 2025 Feb;20(3):247-258. doi: 10.1080/17460913.2025.2453334. Epub 2025 Jan 15.
3
Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis.
Cochrane Database Syst Rev. 2017 Oct 5;10(10):CD009528. doi: 10.1002/14651858.CD009528.pub4.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
7
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
9
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
10
Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.
Cochrane Database Syst Rev. 2017 Apr 25;4(4):CD004197. doi: 10.1002/14651858.CD004197.pub5.

引用本文的文献

1
Properties and antibacterial effectiveness of metal-ion doped borate-based bioactive glasses.
Future Microbiol. 2025 Mar;20(4):315-331. doi: 10.1080/17460913.2025.2470029. Epub 2025 Mar 13.
2
Evaluation of the antibacterial properties of four bioactive biomaterials for chronic wound management.
Future Microbiol. 2025 Feb;20(3):247-258. doi: 10.1080/17460913.2025.2453334. Epub 2025 Jan 15.

本文引用的文献

3
Biofilm-Associated Multi-Drug Resistance in Hospital-Acquired Infections: A Review.
Infect Drug Resist. 2022 Aug 31;15:5061-5068. doi: 10.2147/IDR.S379502. eCollection 2022.
4
Comparison of antibacterial and antibiofilm activity of bioactive glass compounds S53P4 and 45S5.
BMC Microbiol. 2022 Sep 2;22(1):212. doi: 10.1186/s12866-022-02617-8.
5
Structural Evolution of Palygorskite as the Nanocarrier of Silver Nanoparticles for Improving Antibacterial Activity.
ACS Appl Bio Mater. 2022 Aug 15;5(8):3960-3971. doi: 10.1021/acsabm.2c00482. Epub 2022 Jul 13.
6
Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions.
ACS Appl Bio Mater. 2022 Aug 15;5(8):3608-3622. doi: 10.1021/acsabm.2c00384. Epub 2022 Jul 11.
8
In vitro biomineralization potential in simulated wound fluid and antibacterial efficacy of biologically-active glass nanoparticles containing BO/ZnO.
Colloids Surf B Biointerfaces. 2022 Apr;212:112338. doi: 10.1016/j.colsurfb.2022.112338. Epub 2022 Jan 14.
9
Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices.
Clin Microbiol Rev. 2022 Apr 20;35(2):e0022120. doi: 10.1128/cmr.00221-20. Epub 2022 Jan 19.
10
Bioactive Glass Applications: A Literature Review of Human Clinical Trials.
Materials (Basel). 2021 Sep 20;14(18):5440. doi: 10.3390/ma14185440.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验