Suppr超能文献

利用谷歌云端协作平台探索接触距离分布。

Exploring Contact Distance Distributions with Google Colaboratory.

机构信息

Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

出版信息

Methods Mol Biol. 2025;2856:179-196. doi: 10.1007/978-1-0716-4136-1_10.

Abstract

Hi-C and Micro-C are the three-dimensional (3D) genome assays that use high-throughput sequencing. In the analysis, the sequenced paired-end reads are mapped to a reference genome to generate a two-dimensional contact matrix for identifying topologically associating domains (TADs), chromatin loops, and chromosomal compartments. On the other hand, the distance distribution of the paired-end mapped reads also provides insight into the 3D genome structure by highlighting global contact frequency patterns at distances indicative of loops, TADs, and compartments. This chapter presents a basic workflow for visualizing and analyzing contact distance distributions from Hi-C data. The workflow can be run on Google Colaboratory, which provides a ready-to-use Python environment accessible through a web browser. The notebook that demonstrates the workflow is available in the GitHub repository at https://github.com/rnakato/Springer_contact_distance_plot.

摘要

Hi-C 和 Micro-C 是两种基于高通量测序的三维(3D)基因组检测方法。在分析中,测序得到的双端测序reads 被映射到参考基因组上,生成二维接触矩阵,以识别拓扑关联结构域(TAD)、染色质环和染色体区室。另一方面,双端映射 reads 的距离分布也通过突出显示环路、TAD 和区室距离指示的全局接触频率模式,为 3D 基因组结构提供了深入了解。本章介绍了一种从 Hi-C 数据可视化和分析接触距离分布的基本工作流程。该工作流程可以在 Google Colaboratory 上运行,它提供了一个可通过网络浏览器访问的即用型 Python 环境。演示该工作流程的笔记本可在 https://github.com/rnakato/Springer_contact_distance_plot 的 GitHub 存储库中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验