Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
Department of Cell Biology, Duke University, Durham, NC 27708, USA.
Acta Biomater. 2024 Oct 15;188:65-78. doi: 10.1016/j.actbio.2024.09.020. Epub 2024 Sep 19.
In native skeletal muscle, capillaries reside in close proximity to muscle stem cells (satellite cells, SCs) and regulate SC numbers and quiescence through partially understood mechanisms that are difficult to study in vivo. This challenge could be addressed by the development of a 3-dimensional (3D) in vitro model of vascularized skeletal muscle harboring both a pool of quiescent SCs and a robust network of capillaries. Still, studying interactions between SCs and endothelial cells (ECs) within a tissue-engineered muscle environment has been hampered by the incompatibility of commercially available EC media with skeletal muscle differentiation. In this study, we first optimized co-culture media and cellular ratios to generate highly functional vascularized human skeletal muscle tissues ("myovascular bundles") with contractile properties (∼10 mN/mm) equaling those of avascular, muscle-only tissues ("myobundles"). Within one week of muscle differentiation, ECs in these tissues formed a dense network of capillaries that co-aligned with muscle fibers and underwent initial lumenization. Incorporating vasculature within myobundles increased the total SC number by 82%, with SC density and quiescent signature being increased proximal (≤20μm) to EC networks. In vivo, at two weeks post-implantation into dorsal window chambers in nude mice, vascularized myobundles exhibited improved calcium handling compared to avascular implants. In summary, we engineered highly functional myovascular tissues that enable studies of the roles of EC-SC crosstalk in human muscle development, physiology, and disease. STATEMENT OF SIGNIFICANCE: In native skeletal muscle, intricate relationships between vascular cells and muscle stem cells ("satellite cells") play critical roles in muscle growth and regeneration. Current methods for in vitro engineering of contractile skeletal muscle do not recreate capillary networks present in vivo. Our study for the first time generates in vitro robustly vascularized, highly functional engineered human skeletal muscle tissues. Within these tissues, satellite cells are more abundant and, similar to in vivo, they are more dense and less proliferative proximal to endothelial cells. Upon implantation in mice, vascularized engineered muscles show improved calcium handling compared to muscle-only implants. We expect that this versatile in vitro system will enable studies of muscle-vasculature crosstalk in human development and disease.
在天然的骨骼肌中,毛细血管与肌肉干细胞(卫星细胞,SCs)紧密相邻,并通过部分尚未阐明的机制来调节SCs 的数量和静止状态,这些机制在体内很难研究。通过开发一种具有静止 SC 池和稳健毛细血管网络的血管化骨骼肌的 3 维(3D)体外模型,可以解决这一挑战。然而,在组织工程化的肌肉环境中研究SCs 和内皮细胞(ECs)之间的相互作用,一直受到商业 EC 培养基与骨骼肌分化不兼容的阻碍。在这项研究中,我们首先优化了共培养培养基和细胞比例,以生成具有收缩特性(约 10 mN/mm)的高功能血管化人骨骼肌组织(“肌血管束”),其性能与无血管的仅肌肉组织(“肌束”)相当。在肌肉分化后的一周内,这些组织中的 EC 形成了密集的毛细血管网络,与肌纤维对齐,并开始初始管腔化。在肌束中纳入血管会使 SC 总数增加 82%,SC 密度和静止特征在靠近 EC 网络的近端(≤20μm)增加。在体内,将血管化的肌束植入裸鼠背部窗口室两周后,与无血管植入物相比,其钙处理能力得到了改善。总之,我们构建了具有高功能的肌血管组织,使研究 EC-SC 串扰在人类肌肉发育、生理学和疾病中的作用成为可能。 意义声明:在天然骨骼肌中,血管细胞和肌肉干细胞(“卫星细胞”)之间的复杂关系在肌肉生长和再生中起着关键作用。目前用于体外工程化收缩骨骼肌的方法无法重现体内存在的毛细血管网络。我们的研究首次在体外生成了具有强大血管化作用的、高功能的工程化人骨骼肌组织。在这些组织中,卫星细胞更为丰富,并且与体内情况类似,它们在靠近内皮细胞的近端更为密集,增殖能力更低。在植入小鼠后,与仅肌肉植入物相比,血管化工程肌肉的钙处理能力得到了改善。我们预计,这种多功能的体外系统将能够研究人类发育和疾病中肌肉-血管串扰。