Suppr超能文献

ATP6V1D通过溶酶体酸化依赖性和非依赖性机制驱动肝癌干性和进展。

ATP6V1D drives hepatocellular carcinoma stemness and progression via both lysosome acidification-dependent and -independent mechanisms.

作者信息

Xu Zhijie, Liu Ruiyang, Ke Haoying, Xu Fuyuan, Yang Pengfei, Zhang Weiyu, Zhan Yi, Zhao Zhiju, Xiao Fei

机构信息

Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.

Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.

出版信息

Autophagy. 2025 Mar;21(3):513-529. doi: 10.1080/15548627.2024.2406186. Epub 2024 Oct 10.

Abstract

Metabolic reprogramming is pivotal in cancer stem cell (CSC) self-renewal. However, the intricate regulatory mechanisms governing the crosstalk between metabolic reprogramming and liver CSCs remain elusive. Here, using a metabolic CRISPR-Cas9 knockout screen, we identify ATP6V1D, a subunit of the vacuolar-type H-translocating ATPase (V-ATPase), as a key metabolic regulator of hepatocellular carcinoma (HCC) stemness. Elevated ATP6V1D expression correlates with poor clinical outcomes in HCC patients. ATP6V1D knockdown inhibits HCC stemness and malignant progression both and . Mechanistically, ATP6V1D enhances HCC stemness and progression by maintaining macroautophagic/autophagic flux. Specifically, ATP6V1D not only promotes lysosomal acidification, but also enhances the interaction between CHMP4B and IST1 to foster ESCRT-III complex assembly, thereby facilitating autophagosome-lysosome fusion to maintain autophagic flux. Moreover, silencing CHMP4B or IST1 attenuates HCC stemness and progression. Notably, low-dose bafilomycin A targeting the V-ATPase complex shows promise as a potential therapeutic strategy for HCC. In conclusion, our study highlights the critical role of ATP6V1D in driving HCC stemness and progression via the autophagy-lysosomal pathway, providing novel therapeutic targets and approaches for HCC treatment. 3-MA: 3-methyladenine; ANT: adjacent normal liver tissues; ATP6V1D: ATPase H+ transporting V1 subunit D; BafA1: bafilomycin A; CHMP: charged multivesicular body protein; co-IP: co-immunoprecipitation; CSC: cancer stem cell; ESCRT: endosomal sorting complex required for transport; HCC: hepatocellular carcinoma; IF: immunofluorescence; IHC: immunohistochemical; LCSCs: liver cancer stem cells; qRT-PCR: quantitative real time PCR; V-ATPase: vacuolar-type H- translocating ATPase; WB: western blot.

摘要

代谢重编程在癌症干细胞(CSC)自我更新中起关键作用。然而,调控代谢重编程与肝脏CSC之间相互作用的复杂机制仍不清楚。在此,我们利用代谢CRISPR-Cas9基因敲除筛选,鉴定出液泡型H⁺转运ATP酶(V-ATP酶)的一个亚基ATP6V1D,作为肝细胞癌(HCC)干性的关键代谢调节因子。ATP6V1D表达升高与HCC患者不良临床预后相关。ATP6V1D敲低在体内和体外均抑制HCC干性和恶性进展。机制上,ATP6V1D通过维持巨自噬/自噬通量增强HCC干性和进展。具体而言,ATP6V1D不仅促进溶酶体酸化,还增强CHMP4B与IST1之间的相互作用以促进ESCRT-III复合体组装,从而促进自噬体-溶酶体融合以维持自噬通量。此外,沉默CHMP4B或IST1可减弱HCC干性和进展。值得注意的是,靶向V-ATP酶复合体的低剂量巴弗洛霉素A显示出作为HCC潜在治疗策略的前景。总之,我们的研究强调了ATP6V1D在通过自噬-溶酶体途径驱动HCC干性和进展中的关键作用,为HCC治疗提供了新的治疗靶点和方法。3-MA:3-甲基腺嘌呤;ANT:相邻正常肝组织;ATP6V1D:ATP酶H⁺转运V1亚基D;BafA1:巴弗洛霉素A;CHMP:带电多囊泡体蛋白;co-IP:免疫共沉淀;CSC:癌症干细胞;ESCRT:转运所需的内体分选复合体;HCC:肝细胞癌;IF:免疫荧光;IHC:免疫组织化学;LCSCs:肝癌干细胞;qRT-PCR:定量实时PCR;V-ATP酶:液泡型H⁺转运ATP酶;WB:蛋白质免疫印迹

相似文献

6
Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.
J Hepatol. 2025 Jul;83(1):92-104. doi: 10.1016/j.jhep.2024.12.037. Epub 2025 Jan 7.

引用本文的文献

1
Long non-coding RNAs and autophagy: dual drivers of Hepatocellular carcinoma progression.
Cell Death Discov. 2025 Aug 11;11(1):376. doi: 10.1038/s41420-025-02667-7.
2
Lysosomal Ion Channels and Transporters: Recent Findings, Therapeutic Potential, and Technical Approaches.
Bioelectricity. 2025 Mar 18;7(1):29-57. doi: 10.1089/bioe.2025.0010. eCollection 2025 Mar.

本文引用的文献

1
SETD1A drives stemness by reprogramming the epigenetic landscape in hepatocellular carcinoma stem cells.
JCI Insight. 2023 Sep 22;8(18):e168375. doi: 10.1172/jci.insight.168375.
2
Autophagy and autophagy-related pathways in cancer.
Nat Rev Mol Cell Biol. 2023 Aug;24(8):560-575. doi: 10.1038/s41580-023-00585-z. Epub 2023 Mar 2.
3
The multifaceted role of autophagy in cancer.
EMBO J. 2022 Jul 4;41(13):e110031. doi: 10.15252/embj.2021110031. Epub 2022 May 10.
5
Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications.
Nat Rev Gastroenterol Hepatol. 2022 Jan;19(1):26-44. doi: 10.1038/s41575-021-00508-3. Epub 2021 Sep 9.
6
Autophagy in major human diseases.
EMBO J. 2021 Oct 1;40(19):e108863. doi: 10.15252/embj.2021108863. Epub 2021 Aug 30.
7
Exploring liver cancer biology through functional genetic screens.
Nat Rev Gastroenterol Hepatol. 2021 Oct;18(10):690-704. doi: 10.1038/s41575-021-00465-x. Epub 2021 Jun 23.
8
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
9
ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity.
Antiviral Res. 2020 Oct;182:104922. doi: 10.1016/j.antiviral.2020.104922. Epub 2020 Aug 26.
10
β1,4-Galactosyltransferase V Modulates Breast Cancer Stem Cells through Wnt/β-catenin Signaling Pathway.
Cancer Res Treat. 2020 Oct;52(4):1084-1102. doi: 10.4143/crt.2020.093. Epub 2020 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验