Suppr超能文献

盐适应过程中莱茵衣藻基因表达可塑性的演变。

The Evolution of Gene Expression Plasticity During Adaptation to Salt in Chlamydomonas reinhardtii.

机构信息

Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.

Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.

出版信息

Genome Biol Evol. 2024 Nov 1;16(11). doi: 10.1093/gbe/evae214.

Abstract

When environmental change is rapid or unpredictable, phenotypic plasticity can facilitate adaptation to new or stressful environments to promote population persistence long enough for adaptive evolution to occur. However, the underlying genetic mechanisms that contribute to plasticity and its role in adaptive evolution are generally unknown. Two main opposing hypotheses dominate-genetic compensation and genetic assimilation. Here, we predominantly find evidence for genetic compensation over assimilation in adapting the freshwater algae Chlamydomonas reinhardtii to 36 g/L salt environments over 500 generations. More canalized genes in the high-salt (HS) lines displayed a pattern of genetic compensation (63%) fixing near or at the ancestral native expression level, rather than genetic assimilation of the salt-induced level, suggesting that compensation was more common during adaptation to salt. Network analysis revealed an enrichment of genes involved in energy production and salt-resistance processes in HS lines, while an increase in DNA repair mechanisms was seen in ancestral strains. In addition, whole-transcriptome similarity among ancestral and HS lines displayed the evolution of a similar plastic response to salt conditions in independently reared HS lines. We also found more cis-acting regions in the HS lines; however, the expression patterns of most genes did not mimic that of their inherited sequence. Thus, the expression changes induced via plasticity offer temporary relief, but downstream changes are required for a sustainable solution during the evolutionary process.

摘要

当环境变化迅速或不可预测时,表型可塑性可以促进对新环境或压力环境的适应,从而促进种群的持续存在,直到适应进化发生。然而,导致可塑性的潜在遗传机制及其在适应进化中的作用通常是未知的。两个主要的对立假设占据主导地位——遗传补偿和遗传同化。在这里,我们主要发现了在适应淡水藻类莱茵衣藻到 36 克/升盐环境的过程中,遗传补偿而不是遗传同化占主导地位的证据,这一过程持续了 500 代。在高盐(HS)系中,更多的 canalized 基因显示出遗传补偿的模式(63%),固定在接近或在祖先的自然表达水平,而不是遗传同化盐诱导的水平,这表明在适应盐的过程中补偿更为常见。网络分析显示,HS 系中与能量产生和耐盐过程相关的基因富集,而在祖先株中则观察到 DNA 修复机制的增加。此外,祖先株和 HS 系之间的全转录组相似性显示,在独立培养的 HS 系中,对盐条件的类似可塑性反应发生了进化。我们还发现 HS 系中有更多的顺式作用区域;然而,大多数基因的表达模式并没有模仿其遗传序列。因此,通过可塑性诱导的表达变化提供了暂时的缓解,但在进化过程中,需要进行下游变化才能实现可持续的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c89c/11534027/a29ad2448c26/evae214f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验