Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Sci Rep. 2024 Oct 10;14(1):23780. doi: 10.1038/s41598-024-75168-9.
Rapid and accurate diagnosis of acute myeloid leukemia (AML) remains a significant challenge, particularly in the context of myelodysplastic syndrome (MDS) or MDS/myeloproliferative neoplasm with NPM1 mutations. This study introduces an innovative approach using holotomography (HT), a 3D label-free quantitative phase imaging technique, to detect NPM1 mutations. We analyzed a dataset of 2073 HT myeloblast images from 48 individuals, including both NPM1 wild-type and mutated samples, to distinguish subcellular morphological changes associated with NPM1 mutations. Employing a convolutional neural network, we analyzed 3D cell morphology, focusing on refractive index distributions. The machine learning model showed high accuracy, with an area under the receiver operating characteristic curve of 0.9375 and a validation accuracy of 76.0%. Our findings reveal distinct morphological differences between the NPM1 wild-type and mutation at the subcellular level. This study demonstrates the potential of HT combined with deep learning for early, efficient, and cost-effective diagnosis of AML, offering a promising alternative to traditional stepwise genetic testing methods and providing additional assistance in morphological myeloblast discrimination. This approach may revolutionize the diagnostic process in leukemia, facilitating early detection and potentially reducing the reliance on extensive genetic testing.
快速准确地诊断急性髓系白血病(AML)仍然是一个重大挑战,特别是在骨髓增生异常综合征(MDS)或伴 NPM1 突变的 MDS/骨髓增生性肿瘤的背景下。本研究介绍了一种使用全层析(HT)的创新方法,这是一种 3D 无标记定量相位成像技术,用于检测 NPM1 突变。我们分析了来自 48 个人的 2073 个 HT 髓样母细胞图像数据集,包括 NPM1 野生型和突变样本,以区分与 NPM1 突变相关的亚细胞形态变化。我们使用卷积神经网络分析了 3D 细胞形态,重点关注折射率分布。机器学习模型表现出很高的准确性,接收者操作特征曲线下的面积为 0.9375,验证准确性为 76.0%。我们的研究结果揭示了 NPM1 野生型和突变在亚细胞水平上的明显形态差异。本研究表明,HT 与深度学习相结合具有早期、高效和具有成本效益的 AML 诊断潜力,为传统的逐步基因检测方法提供了有前景的替代方案,并在形态髓样母细胞鉴别方面提供了额外的帮助。这种方法可能会彻底改变白血病的诊断过程,有助于早期发现并可能减少对广泛基因检测的依赖。