Suppr超能文献

膳食习惯比较分析与肥胖预测:基于生物电阻抗分析的身体质量指数与体脂率分类比较。

Comparative Analysis of Dietary Habits and Obesity Prediction: Body Mass Index versus Body Fat Percentage Classification Using Bioelectrical Impedance Analysis.

机构信息

Department of Doctoral Studies, "Victor Babeș" University of Medicine and Pharmacy, 300041 Timisoara, Romania.

Center for Molecular Research in Nephrology and Vascular Disease, "Victor Babeș" University of Medicine and Pharmacy, 300041 Timisoara, Romania.

出版信息

Nutrients. 2024 Sep 28;16(19):3291. doi: 10.3390/nu16193291.

Abstract

: Obesity remains a widely debated issue, often criticized for the limitations in its identification and classification. This study aims to compare two distinct systems for classifying obesity: body mass index (BMI) and body fat percentage (BFP) as assessed by bioelectrical impedance analysis (BIA). By examining these measures, the study seeks to clarify how different metrics of body composition influence the identification of obesity-related risk factors. : The study enrolled 1255 adults, comprising 471 males and 784 females, with a mean age of 36 ± 12 years. Participants exhibited varying degrees of weight status, including optimal weight, overweight, and obesity. Body composition analysis was conducted using the TANITA Body Composition Analyzer BC-418 MA III device (T5896, Tokyo, Japan), evaluating the following parameters: current weight, basal metabolic rate (BMR), adipose tissue (%), muscle mass (%), and hydration status (%). : Age and psychological factors like cravings, fatigue, stress, and compulsive eating were significant predictors of obesity in the BMI model but not in the BFP model. Additionally, having a family history of diabetes was protective in the BMI model (OR: 0.33, 0.11-0.87) but increased risk in the BFP model (OR: 1.66, 1.01-2.76). The BMI model demonstrates exceptional predictive ability (AUC = 0.998). In contrast, the BFP model, while still performing well, exhibits a lower AUC (0.975), indicating slightly reduced discriminative power compared to the BMI model. : BMI classification demonstrates superior predictive accuracy, specificity, and sensitivity. This suggests that BMI remains a more reliable measure for identifying obesity-related risk factors compared to the BFP model.

摘要

肥胖仍然是一个备受争议的问题,其识别和分类方法常常受到批评。本研究旨在比较两种不同的肥胖分类系统:身体质量指数(BMI)和通过生物电阻抗分析(BIA)评估的体脂肪百分比(BFP)。通过检查这些指标,本研究旨在阐明不同的身体成分衡量标准如何影响肥胖相关危险因素的识别。

本研究共纳入 1255 名成年人,其中包括 471 名男性和 784 名女性,平均年龄为 36 ± 12 岁。参与者的体重状况各不相同,包括理想体重、超重和肥胖。使用 TANITA 身体成分分析仪 BC-418 MA III 设备(T5896,东京,日本)进行身体成分分析,评估以下参数:当前体重、基础代谢率(BMR)、体脂肪(%)、肌肉量(%)和水合状态(%)。

年龄和心理因素,如渴望、疲劳、压力和强迫性进食,是 BMI 模型中肥胖的显著预测因素,但不是 BFP 模型中的预测因素。此外,在 BMI 模型中,有糖尿病家族史具有保护作用(OR:0.33,0.11-0.87),但在 BFP 模型中则增加了风险(OR:1.66,1.01-2.76)。BMI 模型表现出出色的预测能力(AUC = 0.998)。相比之下,BFP 模型虽然表现良好,但 AUC 较低(0.975),表明与 BMI 模型相比,其区分能力略有下降。

BMI 分类显示出更高的预测准确性、特异性和敏感性。这表明与 BFP 模型相比,BMI 仍然是识别肥胖相关危险因素的更可靠指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b1a/11479188/ef7e9330fe77/nutrients-16-03291-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验