Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
Cell Rep Methods. 2024 Nov 18;4(11):100899. doi: 10.1016/j.crmeth.2024.100899. Epub 2024 Nov 7.
Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL, an open-source tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility for longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for enhanced false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better sensitivity over popular differential abundance testing methods for datasets with smaller sample sizes. In a survival analysis of allogeneic hematopoietic cell transplant recipients, FLORAL demonstrated considerable improvement in microbial feature selection by utilizing longitudinal microbiome data over solely using baseline microbiome data.
从高通量微生物组数据中识别与患者预后相关的预测性生物标志物是一项重要的研究内容,而现有的计算方法并不能很好地解释复杂的生存终点、纵向样本和分类测序偏差。我们提出了 FLORAL,这是一种开源工具,用于对连续、二分类、生存时间和竞争风险结果进行可扩展的对数比lasso 回归和微生物特征选择,同时兼容作为时间相关协变量的纵向微生物组数据。所提出的方法适应了增广拉格朗日算法,用于零和约束优化问题,同时能够实现两阶段筛选过程,以增强假阳性控制。在广泛的模拟和真实数据分析中,FLORAL 与其他基于lasso 的方法相比,实现了更好的假阳性控制,并且在样本量较小的数据集上,与流行的差异丰度检测方法相比,具有更好的敏感性。在异基因造血细胞移植受者的生存分析中,FLORAL 通过利用纵向微生物组数据进行微生物特征选择,表现出了显著的改善,而不仅仅是使用基线微生物组数据。