Kengmana Eli, Ornelas-Gatdula Elysse, Chen Kuan-Lin, Schulman Rebecca
Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
J Am Chem Soc. 2024 Dec 4;146(48):32942-32952. doi: 10.1021/jacs.4c07274. Epub 2024 Nov 20.
Biomolecular condensates control where and how fast many chemical reactions occur in cells by partitioning reactants and catalysts, enabling simultaneous reactions in different spatial locations of a cell. Even without a membrane or physical barrier, the partitioning of the reactants can affect the rates of downstream reaction cascades in ways that depend on reaction location. Such effects can enable systems of biomolecular condensates to spatiotemporally orchestrate chemical reaction networks in cells to facilitate complex behaviors such as ribosome assembly. Here, we develop a system for developing such control in synthetic systems. We localize different transcription templates within different phase-separated, membraneless DNA nanostar (NS) droplets─programmable, in vitro liquid-liquid phase separation systems for partitioning of substrates and localization of reactions to membraneless droplets. When RNA produced within such droplets is also degraded in the bulk, droplet-localized transcription creates RNA concentration gradients. Consistent with the formation of these gradients, toehold-mediated strand displacement reactions involving transcripts are 2-fold slower far from the site of transcription than when nearby. We then demonstrate how multiple such gradients can form and be maintained independently by simultaneous transcription reactions occurring in tandem, each localized to different NS droplet types. Our results provide a means for constructing reaction systems in which different reactions are spatially localized and controlled without the need for physical membranes. This system also provides a means for generally studying how localized reactions and the exchange of reaction products might occur between protocells.
生物分子凝聚体通过分隔反应物和催化剂来控制细胞内许多化学反应发生的位置和速度,从而使细胞的不同空间位置能够同时进行反应。即使没有膜或物理屏障,反应物的分隔也能够以依赖于反应位置的方式影响下游反应级联的速率。这些效应能够使生物分子凝聚体系统在时空上精心安排细胞内的化学反应网络,以促进诸如核糖体组装等复杂行为。在此,我们开发了一种用于在合成系统中实现这种控制的系统。我们将不同的转录模板定位在不同的相分离无膜DNA纳米星(NS)液滴内,NS液滴是用于分隔底物和将反应定位到无膜液滴的可编程体外液-液相分离系统。当在这些液滴内产生的RNA在本体中也被降解时,液滴定位转录会产生RNA浓度梯度。与这些梯度的形成一致,涉及转录本的toehold介导的链置换反应在远离转录位点处的速度比在附近时慢2倍。然后,我们展示了多个这样的梯度如何通过串联发生的同时转录反应独立形成并维持,每个转录反应都定位在不同类型的NS液滴中。我们的结果提供了一种构建反应系统的方法,其中不同的反应在空间上定位和控制,而无需物理膜。该系统还提供了一种普遍研究原细胞之间局部反应和反应产物交换可能如何发生的方法。