Suppr超能文献

通过无膜DNA纳米星液滴内的局部转录对反应进行空间控制。

Spatial Control over Reactions via Localized Transcription within Membraneless DNA Nanostar Droplets.

作者信息

Kengmana Eli, Ornelas-Gatdula Elysse, Chen Kuan-Lin, Schulman Rebecca

机构信息

Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

J Am Chem Soc. 2024 Dec 4;146(48):32942-32952. doi: 10.1021/jacs.4c07274. Epub 2024 Nov 20.

Abstract

Biomolecular condensates control where and how fast many chemical reactions occur in cells by partitioning reactants and catalysts, enabling simultaneous reactions in different spatial locations of a cell. Even without a membrane or physical barrier, the partitioning of the reactants can affect the rates of downstream reaction cascades in ways that depend on reaction location. Such effects can enable systems of biomolecular condensates to spatiotemporally orchestrate chemical reaction networks in cells to facilitate complex behaviors such as ribosome assembly. Here, we develop a system for developing such control in synthetic systems. We localize different transcription templates within different phase-separated, membraneless DNA nanostar (NS) droplets─programmable, in vitro liquid-liquid phase separation systems for partitioning of substrates and localization of reactions to membraneless droplets. When RNA produced within such droplets is also degraded in the bulk, droplet-localized transcription creates RNA concentration gradients. Consistent with the formation of these gradients, toehold-mediated strand displacement reactions involving transcripts are 2-fold slower far from the site of transcription than when nearby. We then demonstrate how multiple such gradients can form and be maintained independently by simultaneous transcription reactions occurring in tandem, each localized to different NS droplet types. Our results provide a means for constructing reaction systems in which different reactions are spatially localized and controlled without the need for physical membranes. This system also provides a means for generally studying how localized reactions and the exchange of reaction products might occur between protocells.

摘要

生物分子凝聚体通过分隔反应物和催化剂来控制细胞内许多化学反应发生的位置和速度,从而使细胞的不同空间位置能够同时进行反应。即使没有膜或物理屏障,反应物的分隔也能够以依赖于反应位置的方式影响下游反应级联的速率。这些效应能够使生物分子凝聚体系统在时空上精心安排细胞内的化学反应网络,以促进诸如核糖体组装等复杂行为。在此,我们开发了一种用于在合成系统中实现这种控制的系统。我们将不同的转录模板定位在不同的相分离无膜DNA纳米星(NS)液滴内,NS液滴是用于分隔底物和将反应定位到无膜液滴的可编程体外液-液相分离系统。当在这些液滴内产生的RNA在本体中也被降解时,液滴定位转录会产生RNA浓度梯度。与这些梯度的形成一致,涉及转录本的toehold介导的链置换反应在远离转录位点处的速度比在附近时慢2倍。然后,我们展示了多个这样的梯度如何通过串联发生的同时转录反应独立形成并维持,每个转录反应都定位在不同类型的NS液滴中。我们的结果提供了一种构建反应系统的方法,其中不同的反应在空间上定位和控制,而无需物理膜。该系统还提供了一种普遍研究原细胞之间局部反应和反应产物交换可能如何发生的方法。

相似文献

1
Spatial Control over Reactions via Localized Transcription within Membraneless DNA Nanostar Droplets.
J Am Chem Soc. 2024 Dec 4;146(48):32942-32952. doi: 10.1021/jacs.4c07274. Epub 2024 Nov 20.
2
How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
Acc Chem Res. 2024 Jul 16;57(14):1885-1895. doi: 10.1021/acs.accounts.4c00114. Epub 2024 Jul 5.
4
Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
Langmuir. 2021 Dec 14;37(49):14323-14335. doi: 10.1021/acs.langmuir.1c02231. Epub 2021 Dec 2.
5
RNA in formation and regulation of transcriptional condensates.
RNA. 2022 Jan;28(1):52-57. doi: 10.1261/rna.078997.121. Epub 2021 Nov 12.
6
Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates.
Biochemistry (Mosc). 2024 Apr;89(4):688-700. doi: 10.1134/S0006297924040084.
7
Controlling biomolecular condensates via chemical reactions.
J R Soc Interface. 2021 Jun;18(179):20210255. doi: 10.1098/rsif.2021.0255. Epub 2021 Jun 30.
8
Co-transcriptional production of programmable RNA condensates and synthetic organelles.
Nat Nanotechnol. 2024 Nov;19(11):1665-1673. doi: 10.1038/s41565-024-01726-x. Epub 2024 Jul 30.
9
Higher-order organization of biomolecular condensates.
Open Biol. 2021 Jun;11(6):210137. doi: 10.1098/rsob.210137. Epub 2021 Jun 16.
10
Dynamic control of DNA condensation.
Nat Commun. 2024 Mar 1;15(1):1915. doi: 10.1038/s41467-024-46266-z.

引用本文的文献

1
Multivalency Controls the Growth and Dynamics of a Biomolecular Condensate.
J Am Chem Soc. 2025 Jul 23;147(29):25242-25253. doi: 10.1021/jacs.5c02947. Epub 2025 Jul 8.
2
Dissecting Rate-Limiting Processes in Biomolecular Condensate Exchange Dynamics.
bioRxiv. 2025 May 22:2025.05.16.654578. doi: 10.1101/2025.05.16.654578.

本文引用的文献

1
Plug-and-play protein biosensors using aptamer-regulated in vitro transcription.
Nat Commun. 2024 Sep 12;15(1):7973. doi: 10.1038/s41467-024-51907-4.
2
Temporally controlled multistep division of DNA droplets for dynamic artificial cells.
Nat Commun. 2024 Aug 27;15(1):7397. doi: 10.1038/s41467-024-51299-5.
3
Co-transcriptional production of programmable RNA condensates and synthetic organelles.
Nat Nanotechnol. 2024 Nov;19(11):1665-1673. doi: 10.1038/s41565-024-01726-x. Epub 2024 Jul 30.
4
Modular RNA motifs for orthogonal phase separated compartments.
Nat Commun. 2024 Jul 30;15(1):6244. doi: 10.1038/s41467-024-50003-x.
5
Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
ACS Synth Biol. 2024 Jul 19;13(7):1964-1977. doi: 10.1021/acssynbio.3c00726. Epub 2024 Jun 17.
6
Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction.
ACS Nano. 2024 Jun 18;18(24):15477-15486. doi: 10.1021/acsnano.3c12161. Epub 2024 Jun 3.
7
Dynamic control of DNA condensation.
Nat Commun. 2024 Mar 1;15(1):1915. doi: 10.1038/s41467-024-46266-z.
8
Dynamic RNA synthetic biology: new principles, practices and potential.
RNA Biol. 2023 Jan;20(1):817-829. doi: 10.1080/15476286.2023.2269508. Epub 2023 Dec 3.
9
rRNA transcription is integral to phase separation and maintenance of nucleolar structure.
PLoS Genet. 2023 Aug 28;19(8):e1010854. doi: 10.1371/journal.pgen.1010854. eCollection 2023 Aug.
10
Light-controlled growth of DNA organelles in synthetic cells.
Interface Focus. 2023 Aug 11;13(5):20230017. doi: 10.1098/rsfs.2023.0017. eCollection 2023 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验