Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.
ACS Synth Biol. 2024 Jul 19;13(7):1964-1977. doi: 10.1021/acssynbio.3c00726. Epub 2024 Jun 17.
Bacteriophage RNA polymerases, in particular T7 RNA polymerase (RNAP), are well-characterized and popular enzymes for many RNA applications in biotechnology both and in cellular settings. These monomeric polymerases are relatively inexpensive and have high transcription rates and processivity to quickly produce large quantities of RNA. T7 RNAP also has high promoter-specificity on double-stranded DNA (dsDNA) such that it only initiates transcription downstream of its 17-base promoter site on dsDNA templates. However, there are many promoter-independent T7 RNAP transcription reactions involving transcription initiation in regions of single-stranded DNA (ssDNA) that have been reported and characterized. These promoter-independent transcription reactions are important to consider when using T7 RNAP transcriptional systems for DNA nanotechnology and DNA computing applications, in which ssDNA domains often stabilize, organize, and functionalize DNA nanostructures and facilitate strand displacement reactions. Here we review the existing literature on promoter-independent transcription by bacteriophage RNA polymerases with a specific focus on T7 RNAP, and provide examples of how promoter-independent reactions can disrupt the functionality of DNA strand displacement circuit components and alter the stability and functionality of DNA-based materials. We then highlight design strategies for DNA nanotechnology applications that can mitigate the effects of promoter-independent T7 RNAP transcription. The design strategies we present should have an immediate impact by increasing the rate of success of using T7 RNAP for applications in DNA nanotechnology and DNA computing.
噬菌体 RNA 聚合酶,特别是 T7 RNA 聚合酶(RNAP),是生物技术中许多 RNA 应用的成熟且流行的酶,无论是在细胞环境中还是在细胞环境外。这些单体聚合酶相对便宜,转录速度快且具有高的延伸性,能够快速产生大量的 RNA。T7 RNAP 对双链 DNA(dsDNA)上的启动子具有很高的特异性,使其仅在 dsDNA 模板上的其 17 个碱基启动子位点的下游开始转录。然而,有许多报道并已鉴定过涉及单链 DNA(ssDNA)中转录起始的 T7 RNAP 转录反应,与启动子无关。在使用 T7 RNAP 转录系统进行 DNA 纳米技术和 DNA 计算应用时,这些与启动子无关的转录反应很重要,因为 ssDNA 结构域通常稳定、组织和功能化 DNA 纳米结构,并促进链置换反应。本文综述了噬菌体 RNA 聚合酶与启动子无关的转录的现有文献,重点介绍了 T7 RNAP,并提供了一些实例,说明与启动子无关的反应如何破坏 DNA 链置换电路组件的功能,并改变基于 DNA 的材料的稳定性和功能。然后,我们强调了 DNA 纳米技术应用的设计策略,这些策略可以减轻与启动子无关的 T7 RNAP 转录的影响。我们提出的设计策略应该会立即产生影响,提高 T7 RNAP 在 DNA 纳米技术和 DNA 计算应用中的成功率。