Suppr超能文献

用于聚合酶链循环的多样化底物和反应条件

Diversifying Substrates and Reaction Conditions for Polymerase Strand Recycling.

作者信息

Li Yueyi, Gundlach Arno, Ellington Andrew, Lucks Julius B

机构信息

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

ACS Synth Biol. 2025 Sep 3. doi: 10.1021/acssynbio.5c00207.

Abstract

Cell-free biosensing systems are being engineered as versatile and programmable diagnostic technologies. A core component of cell-free biosensors is programmable molecular circuits that improve biosensor speed, sensitivity, and specificity by performing molecular computations such as logic evaluation and signal amplification. In previous work, we developed one such circuit system called Polymerase Strand Recycling (PSR), which amplifies cell-free molecular circuits by using T7 RNA polymerase off-target transcription to recycle nucleic acid inputs. We showed that PSR circuits can be configured to detect RNA target inputs as well as be interfaced with allosteric transcription factor-based biosensors to amplify signals and enhance sensitivity. Here we expand the development of PSR circuit empirical design guidelines to generalize the platform for detecting a diverse set of microRNA inputs. We show that PSR circuit function can be enhanced through engineering T7 RNAP, and we present troubleshooting strategies to optimize PSR circuit performance.

摘要

无细胞生物传感系统正被设计成通用且可编程的诊断技术。无细胞生物传感器的一个核心组件是可编程分子电路,它通过执行逻辑评估和信号放大等分子计算来提高生物传感器的速度、灵敏度和特异性。在之前的工作中,我们开发了一种这样的电路系统,称为聚合酶链循环(PSR),它通过使用T7 RNA聚合酶的非靶向转录来循环核酸输入,从而放大无细胞分子电路。我们表明,PSR电路可以被配置为检测RNA靶标输入,也可以与基于变构转录因子的生物传感器连接,以放大信号并提高灵敏度。在这里,我们扩展了PSR电路经验设计指南的开发,以推广用于检测多种微小RNA输入的平台。我们表明,通过对T7 RNAP进行工程改造可以增强PSR电路功能,并且我们提出了故障排除策略以优化PSR电路性能。

相似文献

1
Diversifying Substrates and Reaction Conditions for Polymerase Strand Recycling.
ACS Synth Biol. 2025 Sep 3. doi: 10.1021/acssynbio.5c00207.
2
Design Principles for Polymerase Strand Recycling Circuits.
bioRxiv. 2025 Mar 17:2025.03.17.643471. doi: 10.1101/2025.03.17.643471.
4
Engineering a cell-free biosensor signal amplification circuit with polymerase strand recycling.
bioRxiv. 2024 Apr 25:2024.04.25.591074. doi: 10.1101/2024.04.25.591074.
5
A cell-free biosensor signal amplification circuit with polymerase strand recycling.
Nat Chem Biol. 2025 Jan 13. doi: 10.1038/s41589-024-01816-w.
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Context-Aware Biosensor Design Through Biology-Guided Machine Learning and Dynamical Modeling.
ACS Synth Biol. 2025 Jun 20;14(6):2094-2104. doi: 10.1021/acssynbio.4c00894. Epub 2025 Jun 3.
8
Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Oct 14;10(10):CD015618. doi: 10.1002/14651858.CD015618.
10
Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
ACS Synth Biol. 2024 Jul 19;13(7):1964-1977. doi: 10.1021/acssynbio.3c00726. Epub 2024 Jun 17.

本文引用的文献

1
A modular cell-free protein biosensor platform using split T7 RNA polymerase.
Sci Adv. 2025 Feb 21;11(8):eado6280. doi: 10.1126/sciadv.ado6280.
2
A cell-free biosensor signal amplification circuit with polymerase strand recycling.
Nat Chem Biol. 2025 Jan 13. doi: 10.1038/s41589-024-01816-w.
3
Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
ACS Synth Biol. 2024 Jul 19;13(7):1964-1977. doi: 10.1021/acssynbio.3c00726. Epub 2024 Jun 17.
4
Standardized excitable elements for scalable engineering of far-from-equilibrium chemical networks.
Nat Chem. 2022 Nov;14(11):1224-1232. doi: 10.1038/s41557-022-01001-3. Epub 2022 Aug 4.
6
Programming cell-free biosensors with DNA strand displacement circuits.
Nat Chem Biol. 2022 Apr;18(4):385-393. doi: 10.1038/s41589-021-00962-9. Epub 2022 Feb 17.
7
Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection.
Talanta. 2021 Dec 1;235:122735. doi: 10.1016/j.talanta.2021.122735. Epub 2021 Jul 24.
8
Refinement of saliva microRNA biomarkers for sports-related concussion.
J Sport Health Sci. 2023 May;12(3):369-378. doi: 10.1016/j.jshs.2021.08.003. Epub 2021 Aug 28.
9
Cell-free biosensors for rapid detection of water contaminants.
Nat Biotechnol. 2020 Dec;38(12):1451-1459. doi: 10.1038/s41587-020-0571-7. Epub 2020 Jul 6.
10
Exercise dose affects the circulating microRNA profile in response to acute endurance exercise in male amateur runners.
Scand J Med Sci Sports. 2020 Oct;30(10):1896-1907. doi: 10.1111/sms.13759. Epub 2020 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验