Suppr超能文献

通过人工智能优化血液疾病的诊断与治疗

Optimization of diagnosis and treatment of hematological diseases via artificial intelligence.

作者信息

Wang Shi-Xuan, Huang Zou-Fang, Li Jing, Wu Yin, Du Jun, Li Ting

机构信息

The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.

The Third Clinical Medical College of Gannan Medical University, Ganzhou, China.

出版信息

Front Med (Lausanne). 2024 Nov 7;11:1487234. doi: 10.3389/fmed.2024.1487234. eCollection 2024.

Abstract

BACKGROUND

Optimizing the diagnosis and treatment of hematological diseases is a challenging yet crucial research area. Effective treatment plans typically require the comprehensive integration of cell morphology, immunology, cytogenetics, and molecular biology. These plans also consider patient-specific factors such as disease stage, age, and genetic mutation status. With the advancement of artificial intelligence (AI), more "AI + medical" application models are emerging. In clinical practice, many AI-assisted systems have been successfully applied to the diagnosis and treatment of hematological diseases, enhancing precision and efficiency and offering valuable solutions for clinical practice.

OBJECTIVE

This study summarizes the research progress of various AI-assisted systems applied in the clinical diagnosis and treatment of hematological diseases, with a focus on their application in morphology, immunology, cytogenetics, and molecular biology diagnosis, as well as prognosis prediction and treatment.

METHODS

Using PubMed, Web of Science, and other network search engines, we conducted a literature search on studies from the past 5 years using the main keywords "artificial intelligence" and "hematological diseases." We classified the clinical applications of AI systems according to the diagnosis and treatment. We outline and summarize the current advancements in AI for optimizing the diagnosis and treatment of hematological diseases, as well as the difficulties and challenges in promoting the standardization of clinical diagnosis and treatment in this field.

RESULTS

AI can significantly shorten turnaround times, reduce diagnostic costs, and accurately predict disease outcomes through applications in image-recognition technology, genomic data analysis, data mining, pattern recognition, and personalized medicine. However, several challenges remain, including the lack of AI product standards, standardized data, medical-industrial collaboration, and the complexity and non-interpretability of AI systems. In addition, regulatory gaps can lead to data privacy issues. Therefore, more research and improvements are needed to fully leverage the potential of AI to promote standardization of the clinical diagnosis and treatment of hematological diseases.

CONCLUSION

Our results serve as a reference point for the clinical diagnosis and treatment of hematological diseases and the development of AI-assisted clinical diagnosis and treatment systems. We offer suggestions for further development of AI in hematology and standardization of clinical diagnosis and treatment.

摘要

背景

优化血液系统疾病的诊断和治疗是一个具有挑战性但至关重要的研究领域。有效的治疗方案通常需要综合细胞形态学、免疫学、细胞遗传学和分子生物学。这些方案还会考虑患者特异性因素,如疾病阶段、年龄和基因突变状态。随着人工智能(AI)的发展,越来越多的“AI + 医学”应用模式正在出现。在临床实践中,许多AI辅助系统已成功应用于血液系统疾病的诊断和治疗,提高了准确性和效率,并为临床实践提供了有价值的解决方案。

目的

本研究总结了各种AI辅助系统在血液系统疾病临床诊断和治疗中的研究进展,重点关注其在形态学、免疫学、细胞遗传学和分子生物学诊断以及预后预测和治疗中的应用。

方法

使用PubMed、Web of Science等网络搜索引擎,以“人工智能”和“血液系统疾病”为主要关键词,对过去5年的研究进行文献检索。我们根据诊断和治疗对AI系统的临床应用进行分类。我们概述并总结了AI在优化血液系统疾病诊断和治疗方面的当前进展,以及在推动该领域临床诊断和治疗标准化方面的困难和挑战。

结果

通过在图像识别技术、基因组数据分析、数据挖掘、模式识别和个性化医疗中的应用,AI可以显著缩短周转时间、降低诊断成本并准确预测疾病结果。然而,仍然存在一些挑战,包括缺乏AI产品标准、标准化数据、医工合作以及AI系统的复杂性和不可解释性。此外,监管空白可能导致数据隐私问题。因此,需要更多的研究和改进,以充分发挥AI的潜力,促进血液系统疾病临床诊断和治疗的标准化。

结论

我们的结果为血液系统疾病的临床诊断和治疗以及AI辅助临床诊断和治疗系统的开发提供了参考点。我们为AI在血液学中的进一步发展以及临床诊断和治疗的标准化提供了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff7/11578717/4c71224a7a05/fmed-11-1487234-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验