Suppr超能文献

基于可解释人工智能(XAI)方法从面部图像预测皮肤癌风险:一项概念验证研究。

Predicting skin cancer risk from facial images with an explainable artificial intelligence (XAI) based approach: a proof-of-concept study.

作者信息

Liu Xianjing, Sangers Tobias E, Nijsten Tamar, Kayser Manfred, Pardo Luba M, Wolvius Eppo B, Roshchupkin Gennady V, Wakkee Marlies

机构信息

Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.

Department of Oral & Maxillofacial Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.

出版信息

EClinicalMedicine. 2024 Mar 19;71:102550. doi: 10.1016/j.eclinm.2024.102550. eCollection 2024 May.

Abstract

BACKGROUND

Efficient identification of individuals at high risk of skin cancer is crucial for implementing personalized screening strategies and subsequent care. While Artificial Intelligence holds promising potential for predictive analysis using image data, its application for skin cancer risk prediction utilizing facial images remains unexplored. We present a neural network-based explainable artificial intelligence (XAI) approach for skin cancer risk prediction based on 2D facial images and compare its efficacy to 18 established skin cancer risk factors using data from the Rotterdam Study.

METHODS

The study employed data from the Rotterdam population-based study in which both skin cancer risk factors and 2D facial images and the occurrence of skin cancer were collected from 2010 to 2018. We conducted a deep-learning survival analysis based on 2D facial images using our developed XAI approach. We subsequently compared these results with survival analysis based on skin cancer risk factors using cox proportional hazard regression.

FINDINGS

Among the 2810 participants (mean Age = 68.5 ± 9.3 years, average Follow-up = 5.0 years), 228 participants were diagnosed with skin cancer after photo acquisition. Our XAI approach achieved superior predictive accuracy based on 2D facial images (c-index = 0.72, 95% CI: 0.70-0.74), outperforming that of the known risk factors (c-index = 0.59, 95% CI 0.57-0.61).

INTERPRETATION

This proof-of-concept study underscores the high potential of harnessing facial images and a tailored XAI approach as an easily accessible alternative over known risk factors for identifying individuals at high risk of skin cancer.

FUNDING

The Rotterdam Study is funded through unrestricted research grants from Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. G.V. Roshchupkin is supported by the ZonMw Veni grant (Veni, 549 1936320).

摘要

背景

有效识别皮肤癌高危个体对于实施个性化筛查策略及后续护理至关重要。虽然人工智能在利用图像数据进行预测分析方面具有广阔前景,但其在利用面部图像进行皮肤癌风险预测方面的应用仍未得到探索。我们提出一种基于神经网络的可解释人工智能(XAI)方法,用于基于二维面部图像的皮肤癌风险预测,并使用鹿特丹研究的数据将其疗效与18种已确立的皮肤癌风险因素进行比较。

方法

该研究采用了鹿特丹基于人群的研究数据,在2010年至2018年期间收集了皮肤癌风险因素、二维面部图像以及皮肤癌的发生情况。我们使用开发的XAI方法基于二维面部图像进行深度学习生存分析。随后,我们使用Cox比例风险回归将这些结果与基于皮肤癌风险因素的生存分析进行比较。

结果

在2810名参与者(平均年龄 = 68.5 ± 9.3岁,平均随访时间 = 5.0年)中,228名参与者在照片采集后被诊断出患有皮肤癌。我们的XAI方法基于二维面部图像实现了更高的预测准确性(c指数 = 0.72,95%置信区间:0.70 - 0.74),优于已知风险因素(c指数 = 0.59,95%置信区间0.57 - 0.61)。

解读

这项概念验证研究强调了利用面部图像和定制的XAI方法作为一种易于获取的替代方法来识别皮肤癌高危个体的巨大潜力,相较于已知风险因素具有优势。

资金来源

鹿特丹研究由伊拉斯姆斯医学中心和鹿特丹伊拉斯姆斯大学、荷兰卫生研究与发展组织(ZonMw)、老年疾病研究所(RIDE)、教育、文化和科学部、卫生、福利和体育部、欧盟委员会(DG XII)以及鹿特丹市提供的无限制研究资助。G.V. 罗舒普金得到了ZonMw Veni资助(Veni,549 1936320)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debc/10965465/8ea3c0ecb137/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验