Suppr超能文献

人工智能优化慢性鼻窦炎的标准化诊断与治疗。

Artificial intelligence optimizes the standardized diagnosis and treatment of chronic sinusitis.

作者信息

Liu Yang-Yang, Jiang Shao-Peng, Wang Ying-Bin

机构信息

Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.

出版信息

Front Physiol. 2025 Mar 13;16:1522090. doi: 10.3389/fphys.2025.1522090. eCollection 2025.

Abstract

BACKGROUND

Standardised management of chronic sinusitis (CRS) is a challenging but vital area of research. Not only is accurate diagnosis and individualised treatment plans required, but post-treatment chronic disease management is also indispensable. With the development of artificial intelligence (AI), more "AI + medical" application models are emerging. Many AI-assisted systems have been applied to the diagnosis and treatment of CRS, providing valuable solutions for clinical practice.

OBJECTIVE

This study summarises the research progress of various AI-assisted systems applied to the clinical diagnosis and treatment of CRS, focusing on their role in imaging and pathological diagnosis and prognostic prediction and treatment.

METHODS

We used PubMed, Web of Science, and other Internet search engines with "artificial intelligence"、"machine learning" and "chronic sinusitis" as the keywords to conduct a literature search for studies from the last 7 years. We included literature eligible for AI application to CRS diagnosis and treatment in our study, excluded literature outside this scope, and categorized it according to its clinical application to CRS diagnosis, treatment, and prognosis prediction. We provide an overview and summary of current advances in AI to optimize the diagnosis and treatment of CRS, as well as difficulties and challenges in promoting standardization of clinical diagnosis and treatment in this area.

RESULTS

Through applications in CRS imaging and pathology diagnosis, personalised medicine and prognosis prediction, AI can significantly reduce turnaround times, lower diagnostic costs and accurately predict disease outcomes. However, a number of challenges remain. These include a lack of AI product standards, standardised data, difficulties in collaboration between different healthcare providers, and the non-interpretability of AI systems. There may also be data privacy issues involved. Therefore, more research and improvements are needed to realise the full potential of AI in the diagnosis and treatment of CRS.

CONCLUSION

Our findings inform the clinical diagnosis and treatment of CRS and the development of AI-assisted clinical diagnosis and treatment systems. We provide recommendations for AI to drive standardisation of CRS diagnosis and treatment.

摘要

背景

慢性鼻窦炎(CRS)的标准化管理是一个具有挑战性但至关重要的研究领域。不仅需要准确的诊断和个性化的治疗方案,治疗后的慢性病管理也不可或缺。随着人工智能(AI)的发展,越来越多的“AI+医疗”应用模式正在出现。许多AI辅助系统已应用于CRS的诊断和治疗,为临床实践提供了有价值的解决方案。

目的

本研究总结了各种应用于CRS临床诊断和治疗的AI辅助系统的研究进展,重点关注它们在影像学和病理诊断以及预后预测与治疗中的作用。

方法

我们使用PubMed、Web of Science等互联网搜索引擎,以“人工智能”“机器学习”和“慢性鼻窦炎”为关键词,对过去7年的研究进行文献检索。我们纳入了符合AI应用于CRS诊断和治疗的文献,排除了此范围之外的文献,并根据其在CRS诊断、治疗和预后预测中的临床应用进行分类。我们概述并总结了AI在优化CRS诊断和治疗方面的当前进展,以及该领域在促进临床诊断和治疗标准化方面的困难与挑战。

结果

通过在CRS影像学和病理诊断、个性化医疗以及预后预测中的应用,AI可以显著缩短周转时间、降低诊断成本并准确预测疾病结果。然而,仍存在一些挑战。这些挑战包括缺乏AI产品标准、标准化数据、不同医疗服务提供者之间合作困难以及AI系统的不可解释性。可能还涉及数据隐私问题。因此,需要更多的研究和改进,以充分发挥AI在CRS诊断和治疗中的潜力。

结论

我们的研究结果为CRS的临床诊断和治疗以及AI辅助临床诊断和治疗系统的开发提供了参考。我们为AI推动CRS诊断和治疗的标准化提供了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db67/11966420/0ceaf7128594/fphys-16-1522090-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验