Suppr超能文献

腋窝淋巴结术中超声评估:乳腺癌患者的 Cassandra 预测模型——一项多中心研究。

An Intraoperative Ultrasound Evaluation of Axillary Lymph Nodes: Cassandra Predictive Models in Patients with Breast Cancer-A Multicentric Study.

机构信息

Department of Advanced Medical and Surgical Sciences, Division of General, Oncological, Mini-Invasive and Obesity Surgery-University of Study of Campania "Luigi Vanvitelli", 80136 Naples, Italy.

Breast Unit, Division of Surgery, Cobelli's Hospital, Vallo della Lucania, 84078 Salerno, Italy.

出版信息

Medicina (Kaunas). 2024 Nov 4;60(11):1806. doi: 10.3390/medicina60111806.

Abstract

Axillary lymph node (ALN) staging is crucial for the management of invasive breast cancer (BC). Although various radiological investigations are available, ultrasound (US) is the preferred tool for evaluating ALNs. Despite its immediacy, widespread use, and good predictive value, US is limited by intra- and inter-operator variability. This study aims to evaluate US and Elastosonography Shear Wave (SW-ES) parameters for ALN staging to develop a predictive model, named the Cassandra score (CS), to improve the interpretation of findings and standardize staging. Sixty-three women diagnosed with BC and treated at two Italian hospitals were enrolled in the study. A total of 529 lymph nodes were surgically removed, underwent intraoperative US examination, and were individually sent for a final histological analysis. The study aimed to establish a direct correlation between eight US-SWES features (margins, vascularity, roundness index (RI), loss of hilum fat, cortical thickness, shear-wave elastography hardness (SWEH), peripheral infiltration (PI), and hypoechoic appearance) and the histological outcome (benign vs. malignant). Several statistical models were compared. PI was strongly correlated with malignant ALNs. An ROC analysis for Model A revealed an impressive AUC of 0.978 (S.E. = 0.007, < 0.001), while in Model B, the cut-offs of SWEH and RI were modified to minimize the risk of false negatives (AUC of 0.973, S.E. = 0.009, < 0.001). Model C used the same cut-offs as Model B, but excluded SWEH from the formula, to make the Cassandra model usable even if the US machine does not have SW-ES capability (AUC of 0.940, S.E. = 0.015, < 0.001). A two-tiered model was finally set up, leveraging the strong predictive capabilities of SWEH and RI. In the first tier, only SWES and RI were evaluated: a positive result was predicted if both hardness and roundness were present (SWES > 137 kPa and RI < 1.55), and conversely, a negative result was predicted if both were absent (SWES < 137 kPa and RI > 1.55). In the second tier, if there was a mix of the results (SWES > 137 kPa and RI > 1.55 or SWES < 137 kPa and RI < 1.55), the algorithm in Model B was applied. The model demonstrated an overall prediction accuracy of 90.2% in the training set, 87.5% in the validation set, and 88.9% across the entire dataset. The NPV was notably high at 99.2% in the validation set. This model was named the Cassandra score (CS) and is proposed for the clinical management of BC patients. CS is a simple, non-invasive, fast, and reliable method that showed a PPV of 99.1% in the malignancy prediction of ALNs, potentially being also well suited for young sonographers.

摘要

腋窝淋巴结 (ALN) 分期对于浸润性乳腺癌 (BC) 的管理至关重要。尽管有各种影像学检查方法,但超声 (US) 是评估 ALN 的首选工具。尽管 US 具有即时性、广泛应用和良好的预测价值,但它受到操作者内和操作者间变异性的限制。本研究旨在评估 US 和 Elastosonography 剪切波 (SW-ES) 参数在 ALN 分期中的应用,以开发一种名为 Cassandra 评分 (CS) 的预测模型,以提高对结果的解释和分期的标准化。

在意大利的两家医院就诊并被诊断为 BC 的 63 名女性被纳入了该研究。总共切除了 529 个淋巴结,进行了术中 US 检查,并单独进行了最终的组织学分析。本研究旨在确定 8 个 US-SWES 特征(边缘、血管化、圆形指数 (RI)、门脂肪丢失、皮质厚度、剪切波弹性成像硬度 (SWEH)、外周浸润 (PI) 和低回声外观)与组织学结果(良性与恶性)之间的直接相关性。

比较了几种统计模型。PI 与恶性 ALN 强烈相关。模型 A 的 ROC 分析显示出令人印象深刻的 AUC 为 0.978(S.E. = 0.007,<0.001),而在模型 B 中,SWEH 和 RI 的截断值被修改为最小化假阴性的风险(AUC 为 0.973,S.E. = 0.009,<0.001)。模型 C 使用了与模型 B 相同的截断值,但从公式中排除了 SWEH,以使 Cassandra 模型即使 US 机器不具有 SW-ES 功能也可以使用(AUC 为 0.940,S.E. = 0.015,<0.001)。最后建立了一个两层模型,利用 SWEH 和 RI 的强大预测能力。在第一层中,仅评估 SWES 和 RI:如果硬度和圆形都存在(SWES>137 kPa 和 RI<1.55),则预测为阳性结果,反之,如果两者都不存在(SWES<137 kPa 和 RI>1.55),则预测为阴性结果。在第二层中,如果结果混合(SWES>137 kPa 和 RI>1.55 或 SWES<137 kPa 和 RI<1.55),则应用模型 B 中的算法。该模型在训练集中的整体预测准确性为 90.2%,在验证集中为 87.5%,在整个数据集上为 88.9%。验证集中的阴性预测值 (NPV) 高达 99.2%。该模型被命名为 Cassandra 评分 (CS),并被提议用于 BC 患者的临床管理。CS 是一种简单、非侵入性、快速和可靠的方法,在 ALN 恶性肿瘤预测中的阳性预测值为 99.1%,对于年轻的超声医师来说也可能非常适合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c625/11596888/265e1f228b3a/medicina-60-01806-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验