Ye Tianzheng, Alamgir Azmain, Robertus Cara M, Colina Darianna, Monticello Connor, Donahue Thomas Connor, Hong Lauren, Vincoff Sophia, Goel Shrey, Fekkes Peter, Camargo Luis Miguel, Lam Kieu, Heyes James, Putnam David, Alabi Christopher A, Chatterjee Pranam, DeLisa Matthew P
Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA.
Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA.
bioRxiv. 2024 Nov 11:2024.11.10.622803. doi: 10.1101/2024.11.10.622803.
Aberrant activation of Wnt signaling results in unregulated accumulation of cytosolic β-catenin, which subsequently enters the nucleus and promotes transcription of genes that contribute to cellular proliferation and malignancy. Here, we sought to eliminate pathogenic β-catenin from the cytosol using designer ubiquibodies (uAbs), chimeric proteins composed of an E3 ubiquitin ligase and a target-binding domain that redirect intracellular proteins to the proteasome for degradation. To accelerate uAb development, we leveraged a protein language model (pLM)-driven algorithm called SaLT&PepPr to computationally design "guide" peptides with affinity for β-catenin, which were subsequently fused to the catalytic domain of a human E3 called C-terminus of Hsp70-interacting protein (CHIP). Expression of the resulting peptide-guided uAbs in colorectal cancer cells led to the identification of several designs that significantly reduced the abnormally stable pool of free β-catenin in the cytosol and nucleus while preserving the normal membrane-associated subpopulation. This selective knockdown of pathogenic β-catenin suppressed Wnt/β-catenin signaling and impaired tumor cell survival and proliferation. Furthermore, one of the best degraders selectively decreased cytosolic but not membrane-associated β-catenin levels in livers of BALB/c mice following delivery as a lipid nanoparticle (LNP)-encapsulated mRNA. Collectively, these findings reveal the unique ability of uAbs to selectively eradicate abnormal proteins and and open the door to peptide-programmable biologic modulators of other disease-causing proteins.
Wnt信号通路的异常激活导致细胞质中β-连环蛋白的无节制积累,随后β-连环蛋白进入细胞核并促进有助于细胞增殖和恶性肿瘤的基因转录。在此,我们试图使用定制泛素抗体(uAbs)从细胞质中消除致病性β-连环蛋白,uAbs是一种嵌合蛋白,由E3泛素连接酶和一个靶标结合结构域组成,可将细胞内蛋白质重定向至蛋白酶体进行降解。为了加速uAb的开发,我们利用了一种名为SaLT&PepPr的蛋白质语言模型(pLM)驱动算法,通过计算设计出对β-连环蛋白具有亲和力的“引导”肽,随后将其与一种名为Hsp70相互作用蛋白C末端(CHIP)的人类E3的催化结构域融合。在结肠癌细胞中表达由此产生的肽引导uAbs,从而鉴定出几种设计,这些设计显著减少了细胞质和细胞核中异常稳定的游离β-连环蛋白池,同时保留了正常的膜相关亚群。致病性β-连环蛋白的这种选择性敲低抑制了Wnt/β-连环蛋白信号通路,并损害了肿瘤细胞的存活和增殖。此外,作为脂质纳米颗粒(LNP)包裹的mRNA递送后,其中一种最佳降解剂选择性地降低了BALB/c小鼠肝脏中细胞质而非膜相关的β-连环蛋白水平。总的来说,这些发现揭示了uAbs选择性根除异常蛋白质的独特能力,并为其他致病蛋白的肽可编程生物调节剂打开了大门。