Khairul Anuar Nurul Fatin Syamimi, Abdul Wahab Roswanira, Huyop Fahrul, Normi Yahaya M, Oyewusi Habeebat Adekilekun, Susanti Evi
Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
Investigative and Forensic Science Research Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
J Biomol Struct Dyn. 2024 Nov 28:1-23. doi: 10.1080/07391102.2024.2431655.
Polyethylene terephthalate (PET) pollution is an emerging environmental hazard because of its recalcitrance to degradation. This study proposes an mutagenesis of LipKV1 from for improved lipase-PET interaction, using the PET-degrading cutinase (TfCut2) as the structural benchmark. Results revealed that lid deletion on LipKV1 (LipKV1_LE) facilitated the entry of PET into the active site. The mutation of several predicted amino acids into alanine expanded the LipKV1 active site for better PET binding. Docking results indicated that the LipKV1_LE mutants, Var9 (-6.2 kcal/mol), Var18 (-6.0 kcal/mol), and Var181 (-6.0 kcal/mol), produced higher binding affinities with PET than the wild-type LipKV1 (-2.5 kcal/mol) and TfCut2 (-4.6 kcal/mol), attesting that the selected mutation sites played prominent role in altering the abilities of LipKV1_LE mutants to bind to PET. Our molecular dynamics (MD) simulation results corroborated the variant-PET complexes' improved binding, mirrored by their improved conformations (RMSD ∼0.35 nm). The RMSF results also showed acceptable fluctuation limits of the LipKV1_PET mutant complexes (RMSF < 0.5 nm). Rg data of the complexes showed that they are conformationally stable, with a maximum of three H-bonds in their interaction with PET. SASA results showed that the mutations did not profoundly alter the hydrophobicity of the amino acid residues. MM-PBSA calculations on the LipKV1_PET mutant complexes estimated binding free energies between -28.29 kcal/mol to -23.25 kcal/mol, comparable to the molecular docking data. Thus, the MD data conveyed the practicality of the above-said site mutations in rationally designing the LipKV1 active site for better PET degradation.
聚对苯二甲酸乙二酯(PET)污染因其难以降解而成为一种新出现的环境危害。本研究提出对来源于[具体来源未给出]的LipKV1进行诱变,以改善脂肪酶与PET的相互作用,使用可降解PET的角质酶(TfCut2)作为结构基准。结果表明,LipKV1上的盖子缺失(LipKV1_LE)促进了PET进入活性位点。将几个预测的氨基酸突变为丙氨酸扩大了LipKV1的活性位点,以更好地结合PET。对接结果表明,LipKV1_LE突变体Var9(-6.2千卡/摩尔)、Var18(-6.0千卡/摩尔)和Var181(-6.0千卡/摩尔)与PET的结合亲和力高于野生型LipKV1(-2.5千卡/摩尔)和TfCut2(-4.6千卡/摩尔),证明所选突变位点在改变LipKV1_LE突变体与PET结合能力方面发挥了重要作用。我们的分子动力学(MD)模拟结果证实了变体 - PET复合物结合的改善,其改进的构象(均方根偏差约为0.35纳米)反映了这一点。均方根波动(RMSF)结果还表明LipKV1_PET突变体复合物的波动极限是可接受的(RMSF < 0.5纳米)。复合物的回旋半径(Rg)数据表明它们在构象上是稳定的,与PET相互作用时最多有三个氢键。溶剂可及表面积(SASA)结果表明,这些突变并没有深刻改变氨基酸残基 的疏水性。对LipKV1_PET突变体复合物的MM - PBSA计算估计结合自由能在-28.29千卡/摩尔至-23.二十五千卡/摩尔之间,与分子对接数据相当。因此,MD数据表明上述位点突变在合理设计LipKV1活性位点以实现更好的PET降解方面具有实用性。