Mahout Maxime, Schwartz Laurent, Attal Romain, Bakkar Ashraf, Peres Sabine
CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Universite Paris-Saclay, Orsay, France.
INRIA Lyon Centre, Villeurbanne, France.
PLoS One. 2024 Dec 3;19(12):e0313962. doi: 10.1371/journal.pone.0313962. eCollection 2024.
Cancer cells are known to express the Warburg effect-increased glycolysis and formation of lactic acid even in the presence of oxygen-as well as high glutamine uptake. In tumors, cancer cells are surrounded by collagen, immune cells, and neoangiogenesis. Whether collagen formation, neoangiogenesis, and inflammation in cancer are associated with the Warburg effect needs to be established. Metabolic modelling has proven to be a tool of choice to understand biological reality better and make in silico predictions. Elementary Flux Modes (EFMs) are essential for conducting an unbiased decomposition of a metabolic model into its minimal functional units. EFMs can be investigated using our tool, aspefm, an innovative approach based on logic programming where biological constraints can be incorporated. These constraints allow networks to be characterized regardless of their size. Using a metabolic model of the human cell containing collagen, neoangiogenesis, and inflammation markers, we derived a subset of EFMs of biological relevance to the Warburg effect. Within this model, EFMs analysis provided more adequate results than parsimonious flux balance analysis and flux sampling. Upon further inspection, the EFM with the best linear regression fit to cancer cell lines exometabolomics data was selected. The minimal pathway, presenting the Warburg effect, collagen synthesis, angiogenesis, and release of inflammation markers, showed that collagen production was possible directly de novo from glutamine uptake and without extracellular import of glycine and proline, collagen's main constituents.
已知癌细胞会表现出瓦伯格效应,即即使在有氧的情况下,糖酵解增加并形成乳酸,同时谷氨酰胺摄取量也很高。在肿瘤中,癌细胞被胶原蛋白、免疫细胞和新血管生成所包围。癌症中的胶原蛋白形成、新血管生成和炎症是否与瓦伯格效应相关尚待确定。代谢建模已被证明是一种更好地理解生物学现实并进行计算机预测的首选工具。基本通量模式(EFMs)对于将代谢模型无偏地分解为其最小功能单元至关重要。可以使用我们的工具aspefm来研究EFMs,aspefm是一种基于逻辑编程的创新方法,可纳入生物学约束。这些约束使得无论网络大小如何都能对其进行表征。使用包含胶原蛋白、新血管生成和炎症标志物的人类细胞代谢模型,我们得出了与瓦伯格效应具有生物学相关性的EFMs子集。在该模型中,EFMs分析比简约通量平衡分析和通量采样提供了更合适的结果。经过进一步检查,选择了与癌细胞系外代谢组学数据线性回归拟合最佳的EFM。呈现瓦伯格效应、胶原蛋白合成、血管生成和炎症标志物释放的最小途径表明,胶原蛋白的产生可能直接从谷氨酰胺摄取从头开始,而无需从细胞外导入胶原蛋白的主要成分甘氨酸和脯氨酸。