Suppr超能文献

基于逻辑编程的最小割集揭示了慢性伤口感染的联盟级治疗靶点。

Logic programming-based Minimal Cut Sets reveal consortium-level therapeutic targets for chronic wound infections.

机构信息

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91405, Orsay, France.

Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.

出版信息

NPJ Syst Biol Appl. 2024 Apr 2;10(1):34. doi: 10.1038/s41540-024-00360-6.

Abstract

Minimal Cut Sets (MCSs) identify sets of reactions which, when removed from a metabolic network, disable certain cellular functions. The traditional search for MCSs within genome-scale metabolic models (GSMMs) targets cellular growth, identifies reaction sets resulting in a lethal phenotype if disrupted, and retrieves a list of corresponding gene, mRNA, or enzyme targets. Using the dual link between MCSs and Elementary Flux Modes (EFMs), our logic programming-based tool aspefm was able to compute MCSs of any size from GSMMs in acceptable run times. The tool demonstrated better performance when computing large-sized MCSs than the mixed-integer linear programming methods. We applied the new MCSs methodology to a medically-relevant consortium model of two cross-feeding bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. aspefm constraints were used to bias the computation of MCSs toward exchanged metabolites that could complement lethal phenotypes in individual species. We found that interspecies metabolite exchanges could play an essential role in rescuing single-species growth, for instance inosine could complement lethal reaction knock-outs in the purine synthesis, glycolysis, and pentose phosphate pathways of both bacteria. Finally, MCSs were used to derive a list of promising enzyme targets for consortium-level therapeutic applications that cannot be circumvented via interspecies metabolite exchange.

摘要

最小割集 (MCS) 确定了一组反应,当从代谢网络中移除这些反应时,会使某些细胞功能失效。传统的基于基因组规模代谢模型 (GSMM) 的 MCS 搜索以细胞生长为目标,确定如果破坏了哪些反应会导致致命表型,并检索相应的基因、mRNA 或酶靶点列表。利用 MCS 和基本通量模式 (EFM) 之间的双重联系,我们基于逻辑编程的工具 aspefm 能够在可接受的运行时间内从 GSMM 中计算出任意大小的 MCS。与混合整数线性规划方法相比,该工具在计算大尺寸 MCS 时表现出更好的性能。我们将新的 MCS 方法应用于两种互养细菌(金黄色葡萄球菌和铜绿假单胞菌)的医学相关联合体模型。aspefm 约束被用来偏向于可以互补单个物种致死表型的交换代谢物的 MCS 计算。我们发现,种间代谢物交换可以在拯救单一物种生长方面发挥重要作用,例如肌苷可以互补嘌呤合成、糖酵解和戊糖磷酸途径中两种细菌的致死反应敲除。最后,MCS 用于衍生出一份适用于联合体水平治疗应用的有希望的酶靶点列表,这些酶靶点不能通过种间代谢物交换来规避。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b6/10987626/32eaed8b20be/41540_2024_360_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验