Martins Dylan M, Manda Joy M, Goard Michael J, Parker Philip R L
Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, New Brunswick, NJ 08854, USA.
Curr Biol. 2024 Dec 2;34(23):R1185-R1202. doi: 10.1016/j.cub.2024.10.057.
Determining the location of objects relative to ourselves is essential for interacting with the world. Neural activity in the retina is used to form a vision-independent model of the local spatial environment relative to the body. For example, when an animal navigates through a forest, it rapidly shifts its gaze to identify the position of important objects, such as a tree obstructing its path. This seemingly trivial behavior belies a sophisticated neural computation. Visual information entering the brain in a retinocentric reference frame must be transformed into an egocentric reference frame to guide motor planning and action. This, in turn, allows the animal to extract the location of the tree and plan a path around it. In this review, we explore the anatomical, physiological, and computational implementation of retinocentric-to-egocentric reference frame transformations - a research area undergoing rapid progress stimulated by an ever-expanding molecular, physiological, and computational toolbox for probing neural circuits. We begin by summarizing evidence for retinocentric and egocentric reference frames in the brains of diverse organisms, from insects to primates. Next, we cover how distance estimation contributes to creating a three-dimensional representation of local space. We then review proposed implementations of reference frame transformations across different biological and artificial neural networks. Finally, we discuss how an internal egocentric model of the environment is maintained independently of the sensory inputs from which it is derived. By comparing findings across a variety of nervous systems and behaviors, we aim to inspire new avenues for investigating the neural basis of reference frame transformation, a canonical computation critical for modeling the external environment and guiding goal-directed behavior.
确定物体相对于我们自身的位置对于与世界互动至关重要。视网膜中的神经活动被用于形成一个相对于身体的局部空间环境的视觉独立模型。例如,当动物在森林中导航时,它会迅速转移目光以识别重要物体的位置,比如一棵挡住其路径的树。这种看似微不足道的行为背后隐藏着复杂的神经计算。以视网膜为中心的参考系进入大脑的视觉信息必须被转换为以自我为中心的参考系,以指导运动规划和行动。反过来,这使动物能够提取树的位置并规划绕过它的路径。在这篇综述中,我们探讨了从视网膜中心到自我中心参考系转换的解剖学、生理学和计算实现——这一研究领域因用于探测神经回路的分子、生理学和计算工具箱不断扩展而取得迅速进展。我们首先总结从昆虫到灵长类等不同生物体大脑中视网膜中心和自我中心参考系的证据。接下来,我们阐述距离估计如何有助于创建局部空间的三维表示。然后,我们回顾跨不同生物和人工神经网络的参考系转换的提议实现方式。最后,我们讨论环境的内部自我中心模型如何独立于其衍生的感觉输入而得以维持。通过比较各种神经系统和行为的研究结果,我们旨在激发新的途径来研究参考系转换的神经基础,这是一种对建模外部环境和指导目标导向行为至关重要的典型计算。