Willocx Daan, D'Auria Lucia, Walsh Danica, Scherer Hugo, Alhayek Alaa, Hamed Mostafa M, Borel Franck, Diamanti Eleonora, Hirsch Anna K H
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany.
Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.
Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202414615. doi: 10.1002/anie.202414615. Epub 2025 Jan 2.
With antimicrobial resistance (AMR) reaching alarming levels, new anti-infectives with unprecedented mechanisms of action are urgently needed. The 2-C-methylerythritol-D-erythritol-4-phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram-negative bacteria and Mycobacterium tuberculosis (Mt), whilst being absent in human cells. Here, we solved the first crystal structure of Pseudomonas aeruginosa (Pa) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment-based compound class identified through crystallographic screening of PaIspD. The initial fragment occupies the CTP binding cavity within the active site. Confirmation of fragment-protein interactions was achieved through H saturation-transfer difference nuclear magnetic resonance (H-STD NMR spectroscopy). Building upon these findings and insights from the co-crystal structures, we identified two growth vectors for fragment growing. We synthesized derivatives addressing both growth vectors, which showed improved affinities for PaIspD. Our new fragment class targets PaIspD, displays promising affinity and favorable growth vectors for further optimization.
随着抗菌药物耐药性(AMR)达到令人担忧的水平,迫切需要具有前所未有的作用机制的新型抗感染药物。2-C-甲基赤藓糖醇-D-赤藓糖醇-4-磷酸(MEP)途径因其在众多致病性革兰氏阴性菌和结核分枝杆菌(Mt)中发挥关键作用,而在人类细胞中不存在,成为了一个有吸引力的药物靶点来源。在此,我们解析了铜绿假单胞菌(Pa)IspD(MEP途径中的第三种酶)的首个晶体结构,并展示了通过对PaIspD进行晶体学筛选发现的一类基于片段的化合物。最初的片段占据了活性位点内的CTP结合腔。通过氢饱和转移差异核磁共振(H-STD NMR光谱)证实了片段与蛋白质的相互作用。基于这些发现以及共晶体结构的见解,我们确定了两个用于片段扩展的生长方向。我们合成了针对这两个生长方向的衍生物,它们对PaIspD表现出更高的亲和力。我们新的片段类化合物靶向PaIspD,展现出有前景的亲和力以及有利于进一步优化的生长方向。