Abid Ali Ferdos, Zwetsloot Alexander J, Stone Caroline E, Morgan Tomos E, Wademan Richard F, Carter Andrew P, Straube Anne
MRC Laboratory of Molecular Biology, Cambridge, UK.
School of Biochemistry, University of Bristol, Bristol, UK.
Nat Struct Mol Biol. 2025 Apr;32(4):756-766. doi: 10.1038/s41594-024-01418-z. Epub 2025 Jan 2.
Cellular cargos move bidirectionally on microtubules by recruiting opposite polarity motors dynein and kinesin. These motors show codependence, where one requires the activity of the other, although the mechanism is unknown. Here we show that kinesin-3 KIF1C acts as both an activator and a processivity factor for dynein, using in vitro reconstitutions of human proteins. Activation requires only a fragment of the KIF1C nonmotor stalk binding the cargo adapter HOOK3. The interaction site is separate from the constitutive factors FTS and FHIP, which link HOOK3 to small G-proteins on cargos. We provide a structural model for the autoinhibited FTS-HOOK3-FHIP1B (an FHF complex) and explain how KIF1C relieves it. Collectively, we explain codependency by revealing how mutual activation of dynein and kinesin occurs through their shared adapter. Many adapters bind both dynein and kinesins, suggesting this mechanism could be generalized to other bidirectional complexes.
细胞货物通过招募具有相反极性的动力蛋白(动力蛋白和驱动蛋白)在微管上双向移动。这些动力蛋白表现出相互依赖,即一种动力蛋白需要另一种动力蛋白的活性,尽管其机制尚不清楚。在这里,我们使用人类蛋白质的体外重组实验表明,驱动蛋白-3(KIF1C)既是动力蛋白的激活剂,也是其持续运动因子。激活仅需要KIF1C非运动性柄部的一个片段与货物衔接蛋白HOOK3结合。相互作用位点与将HOOK3连接到货物上的小G蛋白的组成因子FTS和FHIP分开。我们提供了自抑制的FTS-HOOK3-FHIP1B(一种FHF复合物)的结构模型,并解释了KIF1C如何解除这种抑制。总体而言,我们通过揭示动力蛋白和驱动蛋白如何通过它们共享的衔接蛋白相互激活来解释相互依赖性。许多衔接蛋白同时结合动力蛋白和驱动蛋白,这表明这种机制可能适用于其他双向复合物。