Chalkiadaki Kleanthi, Statoulla Elpida, Zafeiri Maria, Voudouri Georgia, Amvrosiadis Theoklitos, Typou Alexandra, Theodoridou Niki, Moschovas Dimitrios, Avgeropoulos Apostolos, Samiotaki Martina, Mason John O, Gkogkas Christos G
Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece.
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Biol Psychiatry Glob Open Sci. 2024 Nov 8;5(1):100413. doi: 10.1016/j.bpsgos.2024.100413. eCollection 2025 Jan.
The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations.
We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the ASD risk gene.
CNTNAP2 cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding. Proteomic analysis revealed disruptions in glutamatergic/GABAergic (gamma-aminobutyric acidergic) synaptic pathways and neurodevelopment, and transcriptomic analysis revealed differentially expressed genes belonging to inhibitory neuron-related gene networks. Interestingly, there was a weak correlation between the 2 datasets, suggesting nuanced translational control mechanisms. Along these lines, we found upregulated AKT/mTOR (mechanistic target of rapamycin) signaling in CNTNAP2 organoids. Spatial transcriptomic analysis of CNTNAP2 ventricular-like zones demonstrated pervasive changes in gene expression, implicating upregulation of cell cycle regulation, synaptic, and glutamatergic/GABAergic pathways. We noted significant overlap of all day-30 organoid omics datasets differentially expressed genes from idiopathic ASD (macrocephaly) induced pluripotent stem cell-derived telencephalic organoids, where FOXG1 was upregulated. Moreover, we detected increased GAD1-expressing and decreased TBR1-expressing cells, suggesting altered GABAergic/glutamatergic neuron development.
These findings potentially highlight a shared mechanism in the early cortical development of various forms of ASD, further elucidate the role of CNTNAP2 in ASD pathophysiology and cortical development, and pave the way for targeted therapies that use cerebral organoids as preclinical models.
自闭症谱系障碍(ASD)的多基因性质要求在早期发育过程中识别汇聚的遗传途径,以阐明其复杂性和多样的表现形式。
我们利用诱导多能干细胞开发了一种人脑类器官模型,并进行靶向基因组编辑以消除ASD风险基因的蛋白质表达。
CNTNAP2人脑类器官表现出细胞周期加速、脑室区紊乱和皮质折叠增加。蛋白质组学分析揭示了谷氨酸能/γ-氨基丁酸能(GABA能)突触途径和神经发育的破坏,转录组学分析揭示了属于抑制性神经元相关基因网络的差异表达基因。有趣的是,这两个数据集之间存在弱相关性,表明存在细微的翻译控制机制。据此,我们发现在CNTNAP2类器官中AKT/mTOR(雷帕霉素作用靶点)信号上调。对CNTNAP2脑室样区域的空间转录组学分析表明基因表达存在普遍变化,这与细胞周期调节、突触和谷氨酸能/GABA能途径的上调有关。我们注意到所有第30天类器官组学数据集与来自特发性ASD(巨头畸形)诱导多能干细胞衍生的端脑类器官的差异表达基因有显著重叠,其中FOXG1上调。此外,我们检测到表达GAD1的细胞增加,表达TBR1的细胞减少,表明GABA能/谷氨酸能神经元发育改变。
这些发现可能突出了各种形式ASD早期皮质发育中的共同机制,进一步阐明了CNTNAP2在ASD病理生理学和皮质发育中的作用,并为使用脑类器官作为临床前模型的靶向治疗铺平了道路。