Suppr超能文献

使用大语言模型的研究的TRIPOD-LLM报告指南。

The TRIPOD-LLM reporting guideline for studies using large language models.

作者信息

Gallifant Jack, Afshar Majid, Ameen Saleem, Aphinyanaphongs Yindalon, Chen Shan, Cacciamani Giovanni, Demner-Fushman Dina, Dligach Dmitriy, Daneshjou Roxana, Fernandes Chrystinne, Hansen Lasse Hyldig, Landman Adam, Lehmann Lisa, McCoy Liam G, Miller Timothy, Moreno Amy, Munch Nikolaj, Restrepo David, Savova Guergana, Umeton Renato, Gichoya Judy Wawira, Collins Gary S, Moons Karel G M, Celi Leo A, Bitterman Danielle S

机构信息

Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK.

出版信息

Nat Med. 2025 Jan;31(1):60-69. doi: 10.1038/s41591-024-03425-5. Epub 2025 Jan 8.

Abstract

Large language models (LLMs) are rapidly being adopted in healthcare, necessitating standardized reporting guidelines. We present transparent reporting of a multivariable model for individual prognosis or diagnosis (TRIPOD)-LLM, an extension of the TRIPOD + artificial intelligence statement, addressing the unique challenges of LLMs in biomedical applications. TRIPOD-LLM provides a comprehensive checklist of 19 main items and 50 subitems, covering key aspects from title to discussion. The guidelines introduce a modular format accommodating various LLM research designs and tasks, with 14 main items and 32 subitems applicable across all categories. Developed through an expedited Delphi process and expert consensus, TRIPOD-LLM emphasizes transparency, human oversight and task-specific performance reporting. We also introduce an interactive website ( https://tripod-llm.vercel.app/ ) facilitating easy guideline completion and PDF generation for submission. As a living document, TRIPOD-LLM will evolve with the field, aiming to enhance the quality, reproducibility and clinical applicability of LLM research in healthcare through comprehensive reporting.

摘要

大语言模型(LLMs)正在医疗保健领域迅速得到应用,这就需要标准化的报告指南。我们展示了个体预后或诊断多变量模型透明报告(TRIPOD)-LLM,它是TRIPOD + 人工智能声明的扩展,解决了大语言模型在生物医学应用中的独特挑战。TRIPOD-LLM提供了一份包含19个主要项目和50个子项目的全面清单,涵盖了从标题到讨论的关键方面。该指南引入了一种模块化格式,适用于各种大语言模型研究设计和任务,其中14个主要项目和32个子项目适用于所有类别。通过快速德尔菲法和专家共识制定,TRIPOD-LLM强调透明度、人工监督和特定任务的性能报告。我们还推出了一个交互式网站(https://tripod-llm.vercel.app/),便于完成指南并生成用于提交的PDF。作为一份动态文件,TRIPOD-LLM将随着该领域的发展而演变,旨在通过全面报告提高医疗保健领域大语言模型研究的质量、可重复性和临床适用性。

相似文献

1
The TRIPOD-LLM reporting guideline for studies using large language models.
Nat Med. 2025 Jan;31(1):60-69. doi: 10.1038/s41591-024-03425-5. Epub 2025 Jan 8.
2
The TRIPOD-LLM Statement: A Targeted Guideline For Reporting Large Language Models Use.
medRxiv. 2024 Jul 25:2024.07.24.24310930. doi: 10.1101/2024.07.24.24310930.
6
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement.
Eur Urol. 2015 Jun;67(6):1142-1151. doi: 10.1016/j.eururo.2014.11.025. Epub 2015 Jan 5.

引用本文的文献

1
2
DeepSeek-R1 vs OpenAI o1 for Ophthalmic Diagnoses and Management Plans.
JAMA Ophthalmol. 2025 Sep 4. doi: 10.1001/jamaophthalmol.2025.2918.
3
Large language models for clinical decision support in gastroenterology and hepatology.
Nat Rev Gastroenterol Hepatol. 2025 Aug 22. doi: 10.1038/s41575-025-01108-1.
4
Evaluating the o1 reasoning large language model for cognitive bias: a vignette study.
Crit Care. 2025 Aug 21;29(1):376. doi: 10.1186/s13054-025-05591-5.
5
Evaluating Hospital Course Summarization by an Electronic Health Record-Based Large Language Model.
JAMA Netw Open. 2025 Aug 1;8(8):e2526339. doi: 10.1001/jamanetworkopen.2025.26339.
8
Operationalization of Artificial Intelligence Applications in the Intensive Care Unit: A Systematic Review.
JAMA Netw Open. 2025 Jul 1;8(7):e2522866. doi: 10.1001/jamanetworkopen.2025.22866.
10

本文引用的文献

2
LCD benchmark: long clinical document benchmark on mortality prediction for language models.
J Am Med Inform Assoc. 2025 Feb 1;32(2):285-295. doi: 10.1093/jamia/ocae287.
3
Large Language Model Influence on Diagnostic Reasoning: A Randomized Clinical Trial.
JAMA Netw Open. 2024 Oct 1;7(10):e2440969. doi: 10.1001/jamanetworkopen.2024.40969.
4
The effect of using a large language model to respond to patient messages.
Lancet Digit Health. 2024 Jun;6(6):e379-e381. doi: 10.1016/S2589-7500(24)00060-8. Epub 2024 Apr 24.
6
AI-Generated Draft Replies Integrated Into Health Records and Physicians' Electronic Communication.
JAMA Netw Open. 2024 Apr 1;7(4):e246565. doi: 10.1001/jamanetworkopen.2024.6565.
7
Regulating advanced artificial agents.
Science. 2024 Apr 5;384(6691):36-38. doi: 10.1126/science.adl0625. Epub 2024 Apr 4.
8
Advancing entity recognition in biomedicine via instruction tuning of large language models.
Bioinformatics. 2024 Mar 29;40(4). doi: 10.1093/bioinformatics/btae163.
9
A visual-language foundation model for computational pathology.
Nat Med. 2024 Mar;30(3):863-874. doi: 10.1038/s41591-024-02856-4. Epub 2024 Mar 19.
10
Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format.
JAMA Netw Open. 2024 Mar 4;7(3):e240357. doi: 10.1001/jamanetworkopen.2024.0357.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验