Suppr超能文献

人工智能时代用于评估胰腺导管腺癌生物学侵袭性和预后的多参数磁共振成像

Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence.

作者信息

Zhao Ben, Cao Buyue, Xia Tianyi, Zhu Liwen, Yu Yaoyao, Lu Chunqiang, Tang Tianyu, Wang Yuancheng, Ju Shenghong

机构信息

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.

出版信息

J Magn Reson Imaging. 2025 Jul;62(1):9-19. doi: 10.1002/jmri.29708. Epub 2025 Jan 9.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The radiological assessment determined the stage and management of PDAC. However, it is a highly heterogeneous disease with the complexity of the tumor microenvironment, and it is challenging to adequately reflect the biological aggressiveness and prognosis accurately through morphological evaluation alone. With the dramatic development of artificial intelligence (AI), multiparametric magnetic resonance imaging (mpMRI) using specific contrast media and special techniques can provide morphological and functional information with high image quality and become a powerful tool in quantifying intratumor characteristics. Besides, AI has been widespread in the field of medical imaging analysis. Radiomics is the high-throughput mining of quantitative image features from medical imaging that enables data to be extracted and applied for better decision support. Deep learning is a subset of artificial neural network algorithms that can automatically learn feature representations from data. AI-enabled imaging biomarkers of mpMRI have enormous promise to bridge the gap between medical imaging and personalized medicine and demonstrate huge advantages in predicting biological characteristics and the prognosis of PDAC. However, current AI-based models of PDAC operate mainly in the realm of a single modality with a relatively small sample size, and the technical reproducibility and biological interpretation present a barrage of new potential challenges. In the future, the integration of multi-omics data, such as radiomics and genomics, alongside the establishment of standardized analytical frameworks will provide opportunities to increase the robustness and interpretability of AI-enabled image biomarkers and bring these biomarkers closer to clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 4.

摘要

胰腺导管腺癌(PDAC)是最致命的恶性肿瘤,其5年总生存率低至约12%,令人沮丧。随着其发病率和死亡率的上升,它很可能成为癌症相关死亡的第二大原因。放射学评估决定了PDAC的分期和治疗方式。然而,它是一种高度异质性疾病,肿瘤微环境复杂,仅通过形态学评估准确反映其生物学侵袭性和预后具有挑战性。随着人工智能(AI)的飞速发展,使用特定造影剂和特殊技术的多参数磁共振成像(mpMRI)能够提供高质量的形态学和功能信息,成为量化肿瘤内部特征的有力工具。此外,AI在医学影像分析领域已广泛应用。影像组学是从医学影像中高通量挖掘定量图像特征,从而提取数据并用于更好的决策支持。深度学习是人工神经网络算法的一个子集,能够从数据中自动学习特征表示。基于AI的mpMRI影像生物标志物在弥合医学影像与个性化医疗之间的差距方面前景广阔,在预测PDAC的生物学特征和预后方面显示出巨大优势。然而,目前基于AI的PDAC模型主要在单一模态领域运行,样本量相对较小,技术可重复性和生物学解释带来了一系列新的潜在挑战。未来,将影像组学和基因组学等多组学数据整合起来,同时建立标准化分析框架,将为提高基于AI的影像生物标志物的稳健性和可解释性提供机会,并使这些生物标志物更接近临床实践。证据水平:3 技术效能:4级

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验