Suppr超能文献

使用图神经网络-长短期记忆网络通过动态功能连接诊断自闭症谱系障碍

Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM.

作者信息

Tang Jun, Chen Jie, Hu Miaojun, Hu Yao, Zhang Zixi, Xiao Liuming

机构信息

School of Educational Sciences, Hunan Normal University, Changsha 410081, China.

College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.

出版信息

Sensors (Basel). 2024 Dec 30;25(1):156. doi: 10.3390/s25010156.

Abstract

Early detection of autism spectrum disorder (ASD) is particularly important given its insidious qualities and the high cost of the diagnostic process. Currently, static functional connectivity studies have achieved significant results in the field of ASD detection. However, with the deepening of clinical research, more and more evidence suggests that dynamic functional connectivity analysis can more comprehensively reveal the complex and variable characteristics of brain networks and their underlying mechanisms, thus providing more solid scientific support for computer-aided diagnosis of ASD. To overcome the lack of time-scale information in static functional connectivity analysis, in this paper, we proposes an innovative GNN-LSTM model, which combines the advantages of long short-term memory (LSTM) and graph neural networks (GNNs). The model captures the spatial features in fMRI data by GNN and aggregates the temporal information of dynamic functional connectivity using LSTM to generate a more comprehensive spatio-temporal feature representation of fMRI data. Further, a dynamic graph pooling method is proposed to extract the final node representations from the dynamic graph representations for classification tasks. To address the variable dependence of dynamic feature connectivity on time scales, the model introduces a jump connection mechanism to enhance information extraction between internal units and capture features at different time scales. The model achieves remarkable results on the ABIDE dataset, with accuracies of 80.4% on the ABIDE I and 79.63% on the ABIDE II, which strongly demonstrates the effectiveness and potential of the model for ASD detection. This study not only provides new perspectives and methods for computer-aided diagnosis of ASD but also provides useful references for research in related fields.

摘要

鉴于自闭症谱系障碍(ASD)具有隐匿性且诊断过程成本高昂,早期检测尤为重要。目前,静态功能连接性研究在ASD检测领域已取得显著成果。然而,随着临床研究的深入,越来越多的证据表明,动态功能连接性分析能够更全面地揭示脑网络的复杂多变特征及其潜在机制,从而为ASD的计算机辅助诊断提供更坚实的科学支持。为克服静态功能连接性分析中缺乏时间尺度信息的问题,本文提出了一种创新的GNN-LSTM模型,该模型结合了长短期记忆(LSTM)和图神经网络(GNN)的优势。该模型通过GNN捕捉功能磁共振成像(fMRI)数据中的空间特征,并使用LSTM聚合动态功能连接性的时间信息,以生成更全面的fMRI数据时空特征表示。此外,还提出了一种动态图池化方法,从动态图表示中提取最终节点表示用于分类任务。为解决动态特征连接性对时间尺度的可变依赖性,该模型引入了跳跃连接机制,以增强内部单元之间的信息提取并捕捉不同时间尺度的特征。该模型在ABIDE数据集上取得了显著成果,在ABIDE I上的准确率为80.4%,在ABIDE II上的准确率为79.63%,有力地证明了该模型在ASD检测中的有效性和潜力。本研究不仅为ASD的计算机辅助诊断提供了新的视角和方法,也为相关领域的研究提供了有益参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70f7/11722565/e205eeabba1c/sensors-25-00156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验