Zhao Feng, Chen Zhiyuan, Rekik Islem, Lee Seong-Whan, Shen Dinggang
School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China.
Front Neurosci. 2020 Apr 28;14:258. doi: 10.3389/fnins.2020.00258. eCollection 2020.
The sliding-window-based dynamic functional connectivity networks (D-FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) are effective methods for diagnosing various neurological diseases, including autism spectrum disorder (ASD). However, traditional D-FCNs are low-order networks based on pairwise correlation between brain regions, thus overlooking high-level interactions across multiple regions of interest (ROIs). Moreover, D-FCNs suffer from the temporal mismatching issue, i.e., subnetworks in the same temporal window do not have temporal correspondence across different subjects. To address the above problems, we first construct a novel high-order D-FCNs based on the principle of "correlation's correlation" to further explore the higher level and more complex interaction relationships among multiple ROIs. Furthermore, we propose to use a central-moment method to extract temporal-invariance properties contained in either low- or high-order D-FCNs. Finally, we design and train an ensemble classifier by fusing the features extracted from conventional FCN, low-order D-FCNs, and high-order D-FCNs for the diagnosis of ASD and normal control subjects. Our method achieved the best ASD classification accuracy (83%), and our results revealed the features extracted from different networks fingerprinting the autistic brain at different connectional levels.
基于滑动窗口的动态功能连接网络(D-FCNs)源自静息态功能磁共振成像(rs-fMRI),是诊断包括自闭症谱系障碍(ASD)在内的各种神经疾病的有效方法。然而,传统的D-FCNs是基于脑区之间成对相关性的低阶网络,因此忽略了多个感兴趣区域(ROIs)之间的高级相互作用。此外,D-FCNs存在时间不匹配问题,即同一时间窗口内的子网在不同受试者之间不存在时间对应关系。为了解决上述问题,我们首先基于“相关性的相关性”原理构建了一种新型高阶D-FCNs,以进一步探索多个ROIs之间更高层次、更复杂的相互作用关系。此外,我们建议使用中心矩方法来提取低阶或高阶D-FCNs中包含的时间不变性属性。最后,我们通过融合从传统功能连接网络(FCN)、低阶D-FCNs和高阶D-FCNs中提取的特征,设计并训练了一个集成分类器,用于诊断ASD和正常对照受试者。我们的方法实现了最佳的ASD分类准确率(83%),我们的结果揭示了从不同网络中提取的特征在不同连接水平上对自闭症大脑进行了指纹识别。