Suppr超能文献

基于双向二维主成分分析的动态功能连接时空特性整合用于疾病分析

Integration of temporal & spatial properties of dynamic functional connectivity based on two-directional two-dimensional principal component analysis for disease analysis.

作者信息

Zhao Feng, Lv Ke, Ye Shixin, Chen Xiaobo, Chen Hongyu, Fan Sizhe, Mao Ning, Ren Yande

机构信息

School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.

School Hospital, Shandong Technology and Business University, Yantai, China.

出版信息

PeerJ. 2024 Apr 9;12:e17078. doi: 10.7717/peerj.17078. eCollection 2024.

Abstract

Dynamic functional connectivity, derived from resting-state functional magnetic resonance imaging (rs-fMRI), has emerged as a crucial instrument for investigating and supporting the diagnosis of neurological disorders. However, prevalent features of dynamic functional connectivity predominantly capture either temporal or spatial properties, such as mean and global efficiency, neglecting the significant information embedded in the fusion of spatial and temporal attributes. In addition, dynamic functional connectivity suffers from the problem of temporal mismatch, i.e., the functional connectivity of different subjects at the same time point cannot be matched. To address these problems, this article introduces a novel feature extraction framework grounded in two-directional two-dimensional principal component analysis. This framework is designed to extract features that integrate both spatial and temporal properties of dynamic functional connectivity. Additionally, we propose to use Fourier transform to extract temporal-invariance properties contained in dynamic functional connectivity. Experimental findings underscore the superior performance of features extracted by this framework in classification experiments compared to features capturing individual properties.

摘要

源自静息态功能磁共振成像(rs-fMRI)的动态功能连接性,已成为研究和辅助诊断神经系统疾病的关键工具。然而,动态功能连接性的普遍特征主要捕捉的是时间或空间属性,如均值和全局效率,而忽略了嵌入在空间和时间属性融合中的重要信息。此外,动态功能连接性还存在时间不匹配的问题,即不同受试者在同一时间点的功能连接性无法匹配。为了解决这些问题,本文引入了一种基于双向二维主成分分析的新型特征提取框架。该框架旨在提取整合了动态功能连接性的空间和时间属性的特征。此外,我们建议使用傅里叶变换来提取动态功能连接性中包含的时间不变性属性。实验结果表明,与捕捉单个属性的特征相比,该框架提取的特征在分类实验中具有更优的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ff/11011592/29154eacc1ee/peerj-12-17078-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验