Suppr超能文献

使用多步机器学习辅助混合虚拟筛选方法发现靶向非小细胞肺癌的新型血小板衍生生长因子受体(PDGFR)抑制剂。

Discovery of novel PDGFR inhibitors targeting non-small cell lung cancer using a multistep machine learning assisted hybrid virtual screening approach.

作者信息

Kranthi Reddy Sandhi, Reddy S V G, Hussain Basha Syed

机构信息

Department of CSE, GST, GITAM (Deemed to be University) Visakhapatnam A.P India.

Innovative Informatica Technologies Hyderabad Telangana India.

出版信息

RSC Adv. 2025 Jan 10;15(2):851-869. doi: 10.1039/d4ra06975g. eCollection 2025 Jan 9.

Abstract

Non-Small Cell Lung Cancer (NSCLC) is a formidable global health challenge, responsible for the majority of cancer-related deaths worldwide. The Platelet-Derived Growth Factor Receptor (PDGFR) has emerged as a promising therapeutic target in NSCLC, given its crucial involvement in cell growth, proliferation, angiogenesis, and tumor progression. Among PDGFR inhibitors, avapritinib has garnered attention due to its selective activity against mutant forms of PDGFR, particularly PDGFRA D842V and KIT exon 17 D816V, linked to resistance against conventional tyrosine kinase inhibitors. In recent years, Machine Learning has emerged as a powerful tool in pharmaceutical research, offering data-driven insights and accelerating lead identification for drug discovery. In this research article, we focus on the application of Machine Learning, alongside the RDKit toolkit, to identify potential anti-cancer drug candidates targeting PDGFR in NSCLC. Our study demonstrates how smart algorithms efficiently narrow down large screening collections to target-specific sets of just a few hundred small molecules, streamlining the hit discovery process. Employing a Machine Learning-assisted virtual screening strategy, we successfully preselected 220 compounds with potential PDGFRA inhibitory activity from a vast library of 1.048 million compounds, representing a mere 0.013% of the original library. To validate these candidates, we employed traditional genetic algorithm-based virtual screening and docking methods. Remarkably, we found that ZINC000002931631 exhibited comparable or even superior inhibitory potential against PDGFRA compared to Avapritinib, which highlights the value of our Machine Learning approach. Moreover, as part of our lead validation studies, we conducted molecular dynamic simulations, revealing critical molecular-level interactions responsible for the conformational changes in PDGFRA necessary for substrate binding. Our study exemplifies the potential of Machine Learning in the drug discovery process, providing a more efficient and cost-effective means of identifying promising drug candidates for NSCLC treatment. The success of this approach in preselecting compounds with potent PDGFRA inhibitory potential highlights its significance in advancing personalized and targeted therapies for cancer treatment.

摘要

非小细胞肺癌(NSCLC)是一项严峻的全球健康挑战,在全球癌症相关死亡中占大多数。血小板衍生生长因子受体(PDGFR)已成为NSCLC中一个有前景的治疗靶点,因为它在细胞生长、增殖、血管生成和肿瘤进展中起着关键作用。在PDGFR抑制剂中,阿伐替尼因其对PDGFR突变形式,特别是与对传统酪氨酸激酶抑制剂耐药相关的PDGFRA D842V和KIT外显子17 D816V的选择性活性而受到关注。近年来,机器学习已成为药物研究中的一种强大工具,提供数据驱动的见解并加速药物发现中的先导化合物识别。在这篇研究文章中,我们着重探讨机器学习与RDKit工具包在识别NSCLC中靶向PDGFR的潜在抗癌药物候选物方面的应用。我们的研究展示了智能算法如何有效地将大型筛选集合缩小到仅几百个小分子的靶向特定集合,简化了命中发现过程。采用机器学习辅助的虚拟筛选策略,我们从104.8万个化合物的庞大库中成功预选了220种具有潜在PDGFRA抑制活性的化合物,仅占原始库的0.013%。为了验证这些候选物,我们采用了基于传统遗传算法的虚拟筛选和对接方法。值得注意的是,我们发现ZINC000002931631对PDGFRA的抑制潜力与阿伐替尼相当甚至更优,这凸显了我们机器学习方法的价值。此外,作为我们先导化合物验证研究的一部分,我们进行了分子动力学模拟,揭示了负责底物结合所需的PDGFRA构象变化的关键分子水平相互作用。我们的研究例证了机器学习在药物发现过程中的潜力,为识别NSCLC治疗中有前景的药物候选物提供了一种更高效且具成本效益的方法。这种方法在预选具有强大PDGFRA抑制潜力的化合物方面的成功凸显了其在推进癌症个性化和靶向治疗中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e358/11718652/a35976e85e83/d4ra06975g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验