Suppr超能文献

使用田口方法优化大肠杆菌BL21(DE3)中胰岛素原的生产,并通过柱上酶切进行高效一步胰岛素纯化。

Optimizing proinsulin production in E. coli BL21 (DE3) using taguchi method and efficient one-step insulin purification by on-column enzymatic cleavage.

作者信息

Hadadian Shahin, Sepahi Mina, Sedighi Samin

机构信息

Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.

Faculty of Material Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

出版信息

Braz J Microbiol. 2025 Mar;56(1):39-53. doi: 10.1007/s42770-025-01614-z. Epub 2025 Jan 23.

Abstract

Diabetes is a critical worldwide health problem. Numerous studies have focused on producing recombinant human insulin to address this issue. In this research, the process factors of production of recombinant His-tagged proinsulin in E. coli BL21 (DE3) strain were studied. Bacterial culture factors with significant effects on the amount of produced recombinant proinsulin were screened using a Taguchi L8 orthogonal array. Proinsulin expression was conducted under predicted optimal conditions. The folded impure His-tagged proinsulin was purified using immobilized metal ion affinity chromatography (IMAC). A novel IMAC sequence order combined with the use of non-His-tagged C-peptide cleavage enzymes followed by His- tagged enterokinase enzyme enabled simultaneous protein purification and elimination of C-peptide and His-tag in just one step. Statistical analysis revealed that the amount of produced proinsulin was significantly affected by several factors including the post-induction incubation temperature, Isopropyl ß-D-1-thiogalactopyranoside (IPTG) concentration, pre-induction incubation temperature, the glucose concentration, bacterial cell population at induction step, and the time of harvesting. The optimized model resulted in an empirical maximum proinsulin concentration of 254.5 ± 11.7 µg/ml. The high purity of the purified insulin (> 96% by SDS-PAGE) indicated that applied IMAC sequence order could be considered an efficient technique for on-column cleavage and insulin purification.

摘要

糖尿病是一个全球性的重大健康问题。众多研究聚焦于生产重组人胰岛素以解决这一问题。在本研究中,对大肠杆菌BL21(DE3)菌株中重组His标签胰岛素原的生产工艺因素进行了研究。使用田口L8正交阵列筛选了对重组胰岛素原产量有显著影响的细菌培养因素。在预测的最佳条件下进行胰岛素原表达。使用固定化金属离子亲和色谱(IMAC)纯化折叠后的不纯His标签胰岛素原。一种新颖的IMAC序列顺序,结合使用非His标签的C肽裂解酶,随后使用His标签的肠激酶,能够在一步中同时进行蛋白质纯化以及去除C肽和His标签。统计分析表明,胰岛素原的产量受到几个因素的显著影响,包括诱导后孵育温度、异丙基β-D-1-硫代半乳糖苷(IPTG)浓度、诱导前孵育温度、葡萄糖浓度、诱导步骤时的细菌细胞数量以及收获时间。优化后的模型得出经验性最大胰岛素原浓度为254.5±11.7µg/ml。纯化胰岛素的高纯度(通过SDS-PAGE分析>96%)表明,所应用的IMAC序列顺序可被视为一种用于柱上裂解和胰岛素纯化的有效技术。

相似文献

6
On-demand insulin manufacturing using cell-free systems with an "on-column" conversion approach.
N Biotechnol. 2025 Jun 20;89:51-59. doi: 10.1016/j.nbt.2025.06.002.
10
A protocol for cloning, expression, and purification of Lysine exporter (LysE) gene of Mycobacterium tuberculosis.
F1000Res. 2024 Feb 5;12:297. doi: 10.12688/f1000research.131768.2. eCollection 2023.

引用本文的文献

1
Innovations, Challenges and Future Directions of T7RNA Polymerase in Microbial Cell Factories.
ACS Synth Biol. 2025 May 16;14(5):1381-1396. doi: 10.1021/acssynbio.5c00139. Epub 2025 Apr 10.

本文引用的文献

2
Insulin Clearance in Health and Disease.
Annu Rev Physiol. 2023 Feb 10;85:363-381. doi: 10.1146/annurev-physiol-031622-043133. Epub 2022 Oct 19.
4
Leveraging Clinical Pharmacology Data to Assess Biosimilarity and Interchangeability of Insulin Products.
Clin Pharmacol Ther. 2023 Apr;113(4):794-802. doi: 10.1002/cpt.2731. Epub 2022 Sep 19.
5
Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus.
Biotechnol Lett. 2022 Jun;44(5-6):643-669. doi: 10.1007/s10529-022-03247-w. Epub 2022 Apr 17.
6
New and efficient purification process for recombinant human insulin produced in Escherichia coli.
Appl Microbiol Biotechnol. 2021 Dec;105(24):9137-9151. doi: 10.1007/s00253-021-11697-x. Epub 2021 Nov 25.
7
Downstream processing of recombinant human insulin and its analogues production from inclusion bodies.
Bioresour Bioprocess. 2021;8(1):65. doi: 10.1186/s40643-021-00419-w. Epub 2021 Jul 27.
8
Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in and Strategies to Address Them for Industrial Applications.
Front Bioeng Biotechnol. 2021 Feb 10;9:630551. doi: 10.3389/fbioe.2021.630551. eCollection 2021.
9
Evolution of Insulin Delivery Devices: From Syringes, Pens, and Pumps to DIY Artificial Pancreas.
Diabetes Ther. 2020 Jun;11(6):1251-1269. doi: 10.1007/s13300-020-00831-z. Epub 2020 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验