Suppr超能文献

用于预测入住重症监护病房的急性镇静催眠药过量患者的预后列线图的开发与验证

Development and validation of a prognostic nomogram for predicting of patients with acute sedative-hypnotic overdose admitted to the intensive care unit.

作者信息

Tang Guo, Zhang Tianshan, Zhang Ping, Yang Sha, Cheng Tao, Yao Rong

机构信息

Emergency Medicine Laboratory and the Department of Emergency, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.

出版信息

Sci Rep. 2025 Jan 27;15(1):3323. doi: 10.1038/s41598-025-85559-1.

Abstract

To develop and evaluate a predictive model for intensive care unit (ICU) admission among patients with acute sedative-hypnotic overdose. We conducted a retrospective analysis of patients admitted to the emergency department of West China Hospital, Sichuan University, between October 11, 2009, and December 31, 2023. Patients were divided into ICU and non-ICU groups based on admission criteria including the need for blood purification therapy, organ support therapy (ventilatory support, vasoactive drugs, renal replacement therapy, artificial liver), or post-cardiopulmonary resuscitation. Patients were randomly split into a training set and a validation set in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to optimize variables, followed by a multivariate logistic regression analysis to identify independent risk factors for ICU admission. A nomogram model was constructed and assessed using receiver operating characteristic (ROC) curves, calibration curves, Decision Curve Analysis (DCA), and Clinical Impact Curve (CIC). Predictors in the nomogram included barbiturate overdose, Glasgow Coma Scale (GCS) score, and anion gap at admission. The nomogram demonstrated strong predictive performance with an area under the curve (AUC) of 0.858 (95% CI: 0.788-0.927) in the training set and 0.845 (95% CI: 0.757-0.933) in the validation set. Calibration curves showed the model closely matched the ideal curve, and DCA and CIC indicated high clinical applicability and utility. Barbiturate overdose, initial decreased GCS score and decreased anion gap were identified as independent risk factors for ICU admission in acute sedative-hypnotic overdose. The nomogram model based on these indicators demonstrates good predictive accuracy, discrimination, and clinical utility.

摘要

开发并评估急性镇静催眠药过量患者入住重症监护病房(ICU)的预测模型。我们对2009年10月11日至2023年12月31日期间入住四川大学华西医院急诊科的患者进行了回顾性分析。根据入院标准,包括是否需要血液净化治疗、器官支持治疗(通气支持、血管活性药物、肾脏替代治疗、人工肝)或心肺复苏后情况,将患者分为ICU组和非ICU组。患者按7:3的比例随机分为训练集和验证集。使用最小绝对收缩和选择算子(LASSO)回归优化变量,随后进行多因素逻辑回归分析以确定入住ICU的独立危险因素。构建列线图模型,并使用受试者操作特征(ROC)曲线、校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)进行评估。列线图中的预测因素包括巴比妥类药物过量、格拉斯哥昏迷量表(GCS)评分和入院时的阴离子间隙。列线图在训练集中曲线下面积(AUC)为0.858(95%CI:0.788 - 0.927),在验证集中为0.845(95%CI:0.757 - 0.933),显示出强大的预测性能。校准曲线表明模型与理想曲线紧密匹配,DCA和CIC表明具有较高的临床适用性和实用性。巴比妥类药物过量、初始GCS评分降低和阴离子间隙降低被确定为急性镇静催眠药过量患者入住ICU的独立危险因素。基于这些指标的列线图模型显示出良好的预测准确性、区分度和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e31f/11770071/ff2e7a9abb90/41598_2025_85559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验