Wald Tassilo, Hamm Benjamin, Holzschuh Julius C, El Shafie Rami, Kudak Andreas, Kovacs Balint, Pflüger Irada, von Nettelbladt Bastian, Ulrich Constantin, Baumgartner Michael Anton, Vollmuth Philipp, Debus Jürgen, Maier-Hein Klaus H, Welzel Thomas
German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany.
Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Eur Radiol Exp. 2025 Feb 6;9(1):15. doi: 10.1186/s41747-025-00554-5.
Gadolinium-enhanced "sampling perfection with application-optimized contrasts using different flip angle evolution" (SPACE) sequence allows better visualization of brain metastases (BMs) compared to "magnetization-prepared rapid acquisition gradient echo" (MPRAGE). We hypothesize that this better conspicuity leads to high-quality annotation (HAQ), enhancing deep learning (DL) algorithm detection of BMs on MPRAGE images.
Retrospective contrast-enhanced (gadobutrol 0.1 mmol/kg) SPACE and MPRAGE data of 157 patients with BM were used, either annotated on MPRAGE resulting in normal annotation quality (NAQ) or on coregistered SPACE resulting in HAQ. Multiple DL methods were developed with NAQ or HAQ using either SPACE or MRPAGE images and evaluated on their detection performance using positive predictive value (PPV), sensitivity, and F1 score and on their delineation performance using volumetric Dice similarity coefficient, PPV, and sensitivity on one internal and four additional test datasets (660 patients).
The SPACE-HAQ model reached 0.978 PPV, 0.882 sensitivity, and 0.916 F1-score. The MPRAGE-HAQ reached 0.867, 0.839, and 0.840, the MPRAGE NAQ 0.964, 0.667, and 0.798, respectively (p ≥ 0.157). Relative to MPRAGE-NAQ, the MPRAGE-HAQ F1-score detection increased on all additional test datasets by 2.5-9.6 points (p < 0.016) and sensitivity improved on three datasets by 4.6-8.5 points (p < 0.001). Moreover, volumetric instance sensitivity improved by 3.6-7.6 points (p < 0.001).
HAQ improves DL methods without specialized imaging during application time. HAQ alone achieves about 40% of the performance improvements seen with SPACE images as input, allowing for fast and accurate, fully automated detection of small (< 1 cm) BMs.
Training with higher-quality annotations, created using the SPACE sequence, improves the detection and delineation sensitivity of DL methods for the detection of brain metastases (BMs)on MPRAGE images. This MRI cross-technique transfer learning is a promising way to increase diagnostic performance.
Delineating small BMs on SPACE MRI sequence results in higher quality annotations than on MPRAGE sequence due to enhanced conspicuity. Leveraging cross-technique ground truth annotations during training improved the accuracy of DL models in detecting and segmenting BMs. Cross-technique annotation may enhance DL models by integrating benefits from specialized, time-intensive MRI sequences while not relying on them. Further validation in prospective studies is needed.
与“磁化准备快速采集梯度回波”(MPRAGE)序列相比,钆增强的“使用不同翻转角演化的应用优化对比采样完美”(SPACE)序列能更好地显示脑转移瘤(BMs)。我们假设这种更好的显影效果能带来高质量标注(HAQ),从而提高深度学习(DL)算法在MPRAGE图像上检测BMs的能力。
回顾性分析了157例患有BM的患者的对比增强(钆布醇0.1 mmol/kg)SPACE和MPRAGE数据,这些数据要么在MPRAGE上进行标注,得到正常标注质量(NAQ),要么在配准后的SPACE上进行标注,得到HAQ。使用NAQ或HAQ,利用SPACE或MRPAGE图像开发了多种DL方法,并在一个内部测试数据集和另外四个测试数据集(660例患者)上,根据阳性预测值(PPV)、灵敏度和F1分数评估其检测性能,根据体积骰子相似系数、PPV和灵敏度评估其勾画性能。
SPACE-HAQ模型的PPV达到0.978,灵敏度达到0.882,F1分数达到0.916。MPRAGE-HAQ分别达到0.867、0.839和0.840,MPRAGE-NAQ分别达到0.964、0.667和0.798(p≥0.157)。相对于MPRAGE-NAQ,MPRAGE-HAQ的F1分数在所有额外测试数据集上提高了2.5 - 9.6分(p<0.016),在三个数据集上灵敏度提高了4.6 - 8.5分(p<0.001)。此外,体积实例灵敏度提高了3.6 - 7.6分(p<0.001)。
HAQ在应用时无需专门成像即可改进DL方法。仅HAQ就能实现以SPACE图像作为输入时约40%的性能提升,从而能够快速、准确且全自动地检测小(<1 cm)BMs。
使用SPACE序列创建的高质量标注进行训练,可提高DL方法在MPRAGE图像上检测脑转移瘤(BMs)的检测和勾画灵敏度。这种MRI跨技术迁移学习是提高诊断性能的一种有前景的方法。
由于显影效果增强,在SPACE MRI序列上勾画小BMs比在MPRAGE序列上能得到更高质量的标注。在训练过程中利用跨技术的真实标注提高了DL模型检测和分割BMs的准确性。跨技术标注可通过整合专门的、耗时的MRI序列的优势而不依赖于它们来增强DL模型。需要在前瞻性研究中进一步验证。