Zhao Yongsen, Zhao Shiqi, Du Yu, Gao Zhongfeng, Li Yanlei, Ma Hongmin, Li Hui, Ren Xiang, Fan Qing, Wu Dan, Wei Qin
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
Department of Pharmacy (Shandong Provincial Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
Adv Mater. 2025 Apr;37(14):e2418731. doi: 10.1002/adma.202418731. Epub 2025 Feb 25.
The precise spatiotemporal control of reactive oxygen species (ROS) generation and scavenging remains pivotal for infected wound healing. However, conventional nanozymes fail to adaptively regulate ROS dynamics across inflammatory and proliferative phases. A near-infrared (NIR)-activated inverse oxide/alloy-structured nanozyme (CoFe/ZnO@C) is developed, featuring enzymatic cascade activities to tune ROS homeostasis through synergistic chemodynamic (CDT), photodynamic (PDT), and photothermal (PTT) therapies. The nanozyme orchestrates a self-regulated cascade: peroxidase (POD)-like activity initially generates bactericidal hydroxyl radicals in acidic wounds, while subsequent NIR triggers hot electron transfer from CoFe to ZnO, facilitating synchronized superoxide dismutase (SOD)-like, catalase (CAT)-like and hydroxyl radical antioxidant capacity (HORAC) activities to scavenge residual ROS. This cascaded network dynamically balances ROS production (POD) and scavenging (NIR-driven SOD/CAT/HORAC), eradicating bacteria while resolving inflammation. In vitro/vivo studies have shown that the proposed method for maintaining ROS homeostasis can markedly enhance the rate of wound healing by the regulation of the inflammatory environment within the injured tissue and the facilitation of rapid re-epithelialization. This work provides an intelligent nanozyme platform that simulates the function of natural enzymes and constructs a cascade reaction strategy to balance the antibacterial and anti-inflammatory demands in the wound microenvironment.
活性氧(ROS)生成与清除的精确时空控制对于感染伤口愈合仍然至关重要。然而,传统的纳米酶无法在炎症和增殖阶段自适应地调节ROS动态变化。本文开发了一种近红外(NIR)激活的反相氧化物/合金结构纳米酶(CoFe/ZnO@C),其具有酶级联活性,可通过协同化学动力学疗法(CDT)、光动力疗法(PDT)和光热疗法(PTT)来调节ROS稳态。该纳米酶精心编排了一个自我调节的级联反应:类似过氧化物酶(POD)的活性首先在酸性伤口中产生杀菌性羟基自由基,而随后的近红外光触发热电子从CoFe转移到ZnO,促进同步的类似超氧化物歧化酶(SOD)、类似过氧化氢酶(CAT)的活性以及羟基自由基抗氧化能力(HORAC),以清除残留的ROS。这种级联网络动态平衡了ROS的产生(POD)和清除(近红外驱动的SOD/CAT/HORAC),在消除细菌的同时解决炎症问题。体外/体内研究表明,所提出的维持ROS稳态的方法可通过调节受伤组织内的炎症环境并促进快速再上皮化,显著提高伤口愈合速度。这项工作提供了一个智能纳米酶平台,该平台模拟天然酶的功能,并构建了一种级联反应策略,以平衡伤口微环境中的抗菌和抗炎需求。