Suppr超能文献

通过交叉图像匹配解决基于涂鸦的医学图像分割中标签不一致的问题。

Addressing inconsistent labeling with cross image matching for scribble-based medical image segmentation.

作者信息

Chen Jingkun, Huang Wenjian, Zhang Jianguo, Debattista Kurt, Han Jungong

出版信息

IEEE Trans Image Process. 2025 Jan 23;PP. doi: 10.1109/TIP.2025.3530787.

Abstract

In recent years, there has been a notable surge in the adoption of weakly-supervised learning for medical image segmentation, utilizing scribble annotation as a means to potentially reduce annotation costs. However, the inherent characteristics of scribble labeling, marked by incompleteness, subjectivity, and a lack of standardization, introduce inconsistencies into the annotations. These inconsistencies become significant challenges for the network's learning process, ultimately affecting the performance of segmentation. To address this challenge, we propose creating a reference set to guide pixel-level feature matching, constructed from class-specific tokens and pixel-level features extracted from variously images. Serving as a repository showcasing diverse pixel styles and classes, the reference set becomes the cornerstone for a pixel-level feature matching strategy. This strategy enables the effective comparison of unlabeled pixels, offering guidance, particularly in learning scenarios characterized by inconsistent and incomplete scribbles. The proposed strategy incorporates smoothing and regression techniques to align pixel-level features across different images. By leveraging the diversity of pixel sources, our matching approach enhances the network's ability to learn consistent patterns from the reference set. This, in turn, mitigates the impact of inconsistent and incomplete labeling, resulting in improved segmentation outcomes. Extensive experiments conducted on three publicly available datasets demonstrate the superiority of our approach over state-of-the-art methods in terms of segmentation accuracy and stability. The code will be made publicly available at https://github.com/jingkunchen/scribble-medical-segmentation.

摘要

近年来,医学图像分割中采用弱监督学习的情况显著增加,利用涂鸦标注作为一种可能降低标注成本的手段。然而,涂鸦标注的固有特征,如不完整性、主观性和缺乏标准化,给标注带来了不一致性。这些不一致性成为网络学习过程中的重大挑战,最终影响分割性能。为应对这一挑战,我们建议创建一个参考集来指导像素级特征匹配,该参考集由特定类别的令牌和从各种图像中提取的像素级特征构建而成。作为展示各种像素样式和类别的存储库,参考集成为像素级特征匹配策略的基石。这种策略能够有效地比较未标记像素,特别是在以不一致和不完整涂鸦为特征的学习场景中提供指导。所提出的策略结合了平滑和回归技术,以对齐不同图像之间的像素级特征。通过利用像素源的多样性,我们的匹配方法增强了网络从参考集中学习一致模式的能力。反过来,这减轻了不一致和不完整标注的影响,从而提高了分割结果。在三个公开可用数据集上进行的广泛实验表明,我们的方法在分割准确性和稳定性方面优于现有方法。代码将在https://github.com/jingkunchen/scribble-medical-segmentation上公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验