Gao Linshuo, Liu Yawei, Su Juanjuan, Liu Kai, Zhang Hongjie
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Adv Mater. 2025 Apr;37(16):e2419349. doi: 10.1002/adma.202419349. Epub 2025 Mar 10.
Near-infrared afterglow luminescent inorganic nanomaterials (NIR-ALINs) possess the unique property of continuing to emit near-infrared (NIR) luminescence after excitation ceases. They demonstrate excellent photostability, deep tissue penetration, and high imaging signal-to-noise ratio (SNR). Additionally, NIR-ALINs can be re-excited in vivo using visible (Vis), NIR light or X-rays, which avoids the need for continuous in situ excitation, thus eliminating autofluorescence of biological tissues and reducing the tediousness of multiple injections. These features make NIR-ALINs particularly attractive for biological applications. In recent years, a series of NIR-ALINs with prolonged afterglow time and enhanced luminescence intensity have been discovered. However, the development of NIR-ALINs still faces significant challenges, as their NIR afterglow performance is usually insufficient to satisfy practical biological applications. There is still a lack of systematic analysis of the strategies for the regulation of NIR afterglow luminescence in inorganic nanomaterials. This review highlights the rational design and modulation strategies of NIR-ALINs, focusing on host substrate selection, trap engineering modulation and surface modification. Moreover, the biological applications of NIR-ALINs in bioimaging, bio-detection and disease therapy are summarized. Finally, the present challenges and perspectives in biological applications, such as insufficient afterglow properties and unclear biosafety, are also discussed.
近红外余辉发光无机纳米材料(NIR-ALINs)具有在激发停止后继续发射近红外(NIR)发光的独特性质。它们表现出优异的光稳定性、深层组织穿透性和高成像信噪比(SNR)。此外,NIR-ALINs可以在体内使用可见光(Vis)、近红外光或X射线进行再激发,这避免了连续原位激发的需要,从而消除了生物组织的自发荧光并减少了多次注射的繁琐性。这些特性使得NIR-ALINs在生物应用中特别具有吸引力。近年来,已经发现了一系列具有延长余辉时间和增强发光强度的NIR-ALINs。然而,NIR-ALINs的发展仍然面临重大挑战,因为它们的近红外余辉性能通常不足以满足实际生物应用的需求。目前仍然缺乏对无机纳米材料中近红外余辉发光调控策略的系统分析。本综述重点介绍了NIR-ALINs的合理设计和调制策略,着重于主体基质选择、陷阱工程调制和表面修饰。此外,还总结了NIR-ALINs在生物成像、生物检测和疾病治疗中的生物应用。最后,还讨论了生物应用中目前面临的挑战和前景,如余辉性能不足和生物安全性不明确等问题。